Google Research

MAXIM: Multi-Axis MLP for Image Processing

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)


Recent progress on Transformers and MLP-like models has shown new architecture design paradigms on many computer vision tasks. However, efficacy and efficiency of these models for low-level vision tasks have not been studied extensively. In this paper, we present MAXIM, a general image processing architecture with multi-axis gated MLPs, to advance the possibility of global operators for low-level vision. Our single-stage MAXIM backbone shares a UNet-shaped hierarchy structure and enjoys a long-range interaction brought by spatial-gated MLPs. Specifically, MAXIM contains two MLP-based building blocks. First, we devise a multi-axis gated MLP that allows efficient and scalable spatial mixing of local and global information. Second, we propose a cross-gating block, an alternative to cross-attention, which accounts for cross-example mutual conditioning. Both modules are exclusively based on MLPs, but benefit from being both global and `fully-convolutional,' two desired properties for low-level vision tasks. Our extensive experimental results show that our proposed MAXIM model achieves state-of-the-art performance on more than ten benchmarks across a range of image processing tasks including denoising, deblurring, deraining, dehazing, and enhancement with less or comparable parameters and FLOPs.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work