Google Research

Part-pair representation for part localization

(2014)

Abstract

In this paper, we propose a novel part-pair representation for part localization. In this representation, an object is treated as a collection of part pairs to model its shape and appearance. By changing the set of pairs to be used, we are able to impose either stronger or weaker geometric constraints on the part configuration. As for the appearance, we build pair detectors for each part pair, which model the appearance of an object at different levels of granularities. Our method of part localization exploits the part-pair representation, featuring the combination of non-parametric exemplars and parametric regression models. Nonparametric exemplars help generate reliable part hypotheses from very noisy pair detections. Then, the regression models are used to group the part hypotheses in a flexible way to predict the part locations. We evaluate our method extensively on the dataset CUB-200-2011 [32], where we achieve significant improvement over the state-of-the-art method on bird part localization. We also experiment with human pose estimation, where our method produces comparable results to existing works.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work