Google Research

Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices

ASPLOS 2021

Abstract

Cloud applications are increasingly shifting from large monolithic services to complex graphs of loosely-coupled microservices. Despite the advantages of modularity and elasticity microservices offer, they also complicate cluster management and performance debugging, as dependencies between tiers introduce backpressure and cascading QoS violations.

We present Sage, a machine learning-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised ML models to circumvent the overhead of trace labeling, captures the impact of dependencies between microservices to determine the root cause of unpredictable performance online, and applies corrective actions to recover a cloud service’s QoS. In experiments on both dedicated local clusters and large clusters on Google Compute Engine we show that Sage consistently achieves over 93% accuracy in correctly identifying the root cause of QoS violations, and improves performance predictability.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work