Google Research

Cross-replication Reliability - An Empirical Approach to Interpreting Inter-rater Reliability

Abstract

When collecting annotations and labeled data from humans, a standard practice is to use inter-rater reliability (IRR) as a measure of data goodness (Hallgren, 2012). Metrics such as Krippendorff’s alpha or Cohen’s kappa are typically required to be above a threshold of 0.6 (Landis and Koch, 1977). These absolute thresholds are unreasonable for crowdsourced data from annotators with high cultural and training variances, especially on subjective topics. We present a new alternative to interpreting IRR that is more empirical and contextualized. It is based upon benchmarking IRR against baseline measures in a replication, one of which is a novel cross-replication reliability (xRR) measure based on Cohen’s (1960) kappa. We call this approach the xRR framework. We opensource a replication dataset of 4 million human judgements of facial expressions and analyze it with the proposed framework. We argue this framework can be used to measure the quality of crowdsourced datasets.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work