Google Research

Improving Ultrametrics Embeddings Through Coresets

  • Guillaume Lagarde
  • Rémi De Joannis de Verclos
  • Vincent Pierre Cohen-addad
International Conference on Machine Learning, ICML 2021 (2021) (to appear)

Abstract

To tackle the curse of dimensionality in data analysis and unsupervised learning, it is critical to be able to efficiently compute ``simple'' faithful representations of the data that helps extract information, improves understanding and visualization of the structure. When the dataset consists of $d$-dimensional vectors, simple representations of the data may consist in trees or ultrametrics, and the goal is to best preserve the distances (i.e.: dissimilarity values) between data elements.

To circumvent the quadratic running times of the most popular methods for fitting ultrametrics, such as average, single, or complete linkage,~\citet{CKL20} recently presented a new algorithm that for any $c \ge 1$, outputs in time $n^{1+O(1/c^2)}$ an ultrametric $\Delta$ such that for any two points $u, v$, $\Delta(u, v)$ is within a multiplicative factor of $5c$ to the distance between $u$ and $v$ in the ``best'' ultrametric representation. We improve the above result and show how to improve the above guarantee from $5c$ to $\sqrt{2}c + \varepsilon$ while achieving the same asymptotic running time. To further show the advantage of our new method, we experimentally analyze the performances of our algorithm which indeed yields embeddings of significantly better quality for various real-world datasets.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work