Google Research

Panoptic Image Annotation with a Collaborative Assistant


This paper aims to reduce the time to annotate images for panoptic segmentation, which requires annotating segmentation masks and class labels for all object instances and stuff regions. We formulate our approach as a collaborative process between an annotator and an automated assistant who take turns to jointly annotate an image using a predefined pool of segments. Actions performed by the annotator serve as a strong contextual signal. The assistant intelligently reacts to this signal by annotating other parts of the image on its own, which reduces the amount of work required by the annotator. We perform thorough experiments on the COCO panoptic dataset, both in simulation and with human annotators. These demonstrate that our approach is significantly faster than the recent machine-assisted interface of [4], and 2.4x to 5x faster than manual polygon drawing. Finally, we show on ADE20k [62] that our method can be used to efficiently annotate new datasets, bootstrapping from a very small amount of annotated data.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work