Fair Clustering Through Fairlets

Flavio Chierichetti
NIPS 2017

Abstract

We study the question of fair clustering under the disparate impact doctrine, where each protected
class must have approximately equal representation in every cluster. We formulate the fair clustering
problem under both the k-center and the k-median objectives, and show that even with two protected
classes the problem is challenging, as the optimum solution can violate common conventions—for instance a point may no longer be assigned to its nearest cluster center!

En route we introduce the concept of fairlets, which are minimal sets that satisfy fair representation
while approximately preserving the clustering objective. We show that any fair clustering problem can be
decomposed into first finding good fairlets, and then using existing machinery for traditional clustering
algorithms. While finding good fairlets can be NP-hard, we proceed to obtain efficient approximation
algorithms based on minimum cost flow.

We empirically quantify the value of fair clustering on real-world datasets with sensitive attributes.

Research Areas