Google Research

State Space LSTM Models with Particle MCMC Inference

The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS) workshop on Bayesian Deep Learning. (2017)

Abstract

Long Short-Term Memory (LSTM) is one of the most powerful sequence models. Despite the strong performance, however, it lacks the nice interpretability as in state space models. In this paper, we present a way to combine the best of both worlds by introducing State Space LSTM (SSL) models that generalizes the earlier work Zaheer et al. (2017) of combining topic models with LSTM. However, unlike Zaheer et al. (2017), we do not make any factorization assumptions in our inference algorithm. We present an efficient sampler based on sequential Monte Carlo (SMC) method that draws from the joint posterior directly. Experimental results confirms the superiority and stability of this SMC inference algorithm on a variety of domains.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work