Google Research

Deep Neural Networks for Swept Volume Prediction Between Configurations

Third Workshop on Machine Learning in Planning and Control of Robot Motion at ICRA (2018)

Abstract

Swept Volume (SV), the volume displaced by an object when it is moving along a trajectory, is considered a useful metric for motion planning. First, SV has been used to identify collisions along a trajectory, because it directly measures the amount of space required for an object to move. Second, in sampling-based motion planning SV is as an excellent distance metric, because it correlates to the likelihood of success of the expensive local planning step between two sampled configurations. However, in both of these applications, traditional SV algorithms are too computationally expensive for efficient motion planning. In this work, we train Deep Neural Networks (DNNs) to learn the size of SV for specific robot geometries. Results for two robots, a 6 degree of freedom (DOF) rigid body and a 7 DOF fixed-based manipulator, indicate that the network estimations are very close to the true size of SV and is more than 1500 times faster than a state of the art SV estimation algorithm.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work