Carousel: Scalable Traffic Shaping at End-Hosts
Abstract
Traffic shaping, including pacing and rate limiting, is fundamental to the correct and efficient operation of both datacenter and wide area networks. Sample use cases include policy-based bandwidth allocation to flow aggregates, rate-based congestion control algorithms, and packet pacing to avoid bursty transmissions that can overwhelm router buffers. Driven by the need to scale to millions of flows and to apply complex policies, traffic shaping is moving from network switches into the end hosts, typically implemented in software in the kernel networking stack.
In this paper, we show that the performance overhead of end-host traffic shaping is substantial limits overall system scalability as we move to thousands of individual traffic classes per server. Measurements from production servers show that shaping at hosts consumes considerable CPU and memory, unnecessarily drops packets, suffers from head of line blocking and inaccuracy, and does not provide backpressure up the stack. We present Carousel, a framework that scales to tens of thousands of policies and flows per server, built from the synthesis of three key ideas: i) a single queue shaper using time as the basis for releasing packets, ii) fine-grained, just-in-time freeing of resources in higher layers coupled to actual packet departures, and iii) one shaper per CPU core, with lock-free coordination. Our production experience in serving video traffic at a Cloud service provider shows that Carousel shapes traffic accurately while improving overall machine CPU utilization by 8% (an improvement of 20% in the CPU utilization attributed to networking) relative to state-of-art deployments. It also conforms 10 times more accurately to target rates, and consumes two orders of magnitude less memory than existing approaches.
In this paper, we show that the performance overhead of end-host traffic shaping is substantial limits overall system scalability as we move to thousands of individual traffic classes per server. Measurements from production servers show that shaping at hosts consumes considerable CPU and memory, unnecessarily drops packets, suffers from head of line blocking and inaccuracy, and does not provide backpressure up the stack. We present Carousel, a framework that scales to tens of thousands of policies and flows per server, built from the synthesis of three key ideas: i) a single queue shaper using time as the basis for releasing packets, ii) fine-grained, just-in-time freeing of resources in higher layers coupled to actual packet departures, and iii) one shaper per CPU core, with lock-free coordination. Our production experience in serving video traffic at a Cloud service provider shows that Carousel shapes traffic accurately while improving overall machine CPU utilization by 8% (an improvement of 20% in the CPU utilization attributed to networking) relative to state-of-art deployments. It also conforms 10 times more accurately to target rates, and consumes two orders of magnitude less memory than existing approaches.