Google Research

WikiReading: A Novel Large-scale Language Understanding Task over Wikipedia

  • Daniel Hewlett
  • Alexandre Lacoste
  • Llion Jones
  • Illia Polosukhin
  • Andrew Fandrianto
  • Jay Han
  • Matthew Kelcey
  • David Berthelot
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany (2016)

Abstract

We present WikiReading, a large-scale natural language understanding task and publicly-available dataset with 18 million instances. The task is to predict textual values from the structured knowledge base Wikidata by reading the text of the corresponding Wikipedia articles. The task contains a rich variety of challenging classification and extraction sub-tasks, making it well-suited for end-to-end models such as deep neural networks (DNNs). We compare various state-of-the-art DNN-based architectures for document classification, information extraction, and question answering. We find that models supporting a rich answer space, such as word or character sequences, perform best. Our best-performing model, a word-level sequence to sequence model with a mechanism to copy out-of-vocabulary words, obtains an accuracy of 71.8%.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work