Google Research

LLORMA: Local Low-Rank Matrix Approximation

Journal of Machine Learning Research (JMLR), vol. 17 (2016), pp. 1-24


Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is low-rank. In this paper, we propose, analyze, and experiment with two procedures, one parallel and the other global, for constructing local matrix approximations. The two approaches approximate the observed matrix as a weighted sum of low-rank matrices. These matrices are limited to a local region of the observed matrix. We analyze the accuracy of the proposed local low-rank modeling. Our experiments show improvements in prediction accuracy over classical approaches for recommendation tasks.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work