Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies
Abstract
Large language models (LLMs), employed as multiple agents that interact and collaborate with each other, have excelled at solving complex tasks. The agents are programmed with {prompts} that declare their functionality, along with the {workflows} that orchestrate interactions within a structured flow. Designing prompts and workflows for multi-agent systems is inherently complex, especially when addressing a new task. It often demands expert-level knowledge and involves significant trial and error. Gaining a deep understanding of the factors that contribute to effective multi-agent systems is essential for automating the entire process. Motivated by this, we first conduct an in-depth analysis of the design spaces for multi-agent systems, focusing on the impact of prompts, scaling the number of agents, and common types of agentic modules. Our findings reveal that top-performing systems often emerge from simpler design spaces, where prompts play a critical role in enhancing agent functionality and enabling more effective scaling. Based on the insights, we propose Multi-Agent System Search (MASS), a multi-stage optimization framework that performs the optimization in a pruned design space, with prompts and an influential subset of modules. We show that MASS-optimized multi-agent systems outperform existing alterntives by a substantial margin. Based on the MASS-found systems, we finally propose design principles behind building effective multi-agent systems.