Locally adaptive optimization: adaptive seeding for monotone submodular functions

Ashwinkumar Badanidiyuru
Christos Papadimitriou
Aviad Rubinstein
Lior Seeman
Yaron Singer
SODA (2016)

Abstract

The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize.

Our main result is a (1 - 1/e)^2-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call locally-adaptive policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the (1 - 1/e)^2-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies.

We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most k that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from Planted-Clique that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of locally-adaptive policies we use in the main result.