Jump to Content

Latent Translation: Crossing Modalities by Bridging Generative Models

ArXiv (2019)

Abstract

End-to-end optimization has achieved state-of-the-art performance on many specific problems, but there is no straight-forward way to combine pretrained models for new problems. Here, we explore improving modularity by learning a post-hoc interface between two existing models to solve a new task. Specifically, we take inspiration from neural machine translation, and cast the challenging problem of cross-modal domain transfer as unsupervised translation between the latent spaces of pretrained deep generative models. By abstracting away the data representation, we demonstrate that it is possible to transfer across different modalities (e.g., image-to-audio) and even different types of generative models (e.g., VAE-to-GAN). We compare to state-of-the-art techniques and find that a straight-forward variational autoencoder is able to best bridge the two generative models through learning a shared latent space. We can further impose supervised alignment of attributes in both domains with a classifier in the shared latent space. Through qualitative and quantitative evaluations, we demonstrate that locality and semantic alignment are preserved through the transfer process, as indicated by high transfer accuracies and smooth interpolations within a class. Finally, the modular structure enables efficient training of new interface models, decoupling from the cost of training the base generative models.

Research Areas