Inspect or Guess? Mechanism Design with Unobservable Inspection

Azarakhsh Malekian
Ali Daei Naby
The 21st Conference on Web and Internet Economics (WINE) (2025) (to appear)
Google Scholar

Abstract

We study the problem of selling $k$ units of an item to $n$ unit-demand buyers to maximize revenue, where buyers' values are independently (and not necessarily identically) distributed. The buyers' values are initially unknown but can be learned at a cost through inspection sources. Motivated by applications in e-commerce, where the inspection is unobservable by the seller (i.e., buyers can externally inspect their values without informing the seller), we introduce a framework to find the optimal selling strategy when the inspection is unobservable by the seller. We fully characterize the optimal mechanism for selling to a single buyer, subject to an upper bound on the allocation probability. Building on this characterization and leveraging connections to the \emph{Prophet Inequality}, we design an approximation mechanism for selling $k$ items to $n$ buyers that achieves $1-1/\sqrt{k+3}$ of the optimal revenue. Our mechanism is simple and sequential and achieves the same approximation bound in an online setting, remaining robust to the order of buyer arrivals. Additionally, in a setting with observable inspection, we leverage connections to index-based \emph{committing policies} in \emph{Weitzman's Pandora's problem with non-obligatory inspection} and propose a new sequential
mechanism for selling an item to $n$ buyers that significantly improves the existing approximation factor to the optimal revenue from $0.5$ to $0.8$.