Improving image generative models with human interactions

Andrew Lampinen
David Richard So
Fred Bertsch
arXiv (2017)

Abstract

GANs provide a framework for training generative models which mimic a data distribution. However, in many cases we wish to train a generative model to optimize some auxiliary objective function within the data it generates, such as making more aesthetically pleasing images. In some cases, these objective functions are difficult to evaluate, e.g. they may require human interaction. Here, we develop a system for efficiently training a GAN to increase a generic rate of positive user interactions, which could represent aesthetic ratings or any other objective. To do this, we build a model of human behavior in the targeted domain from a relatively small set of interactions, and then use this behavioral model as an auxiliary loss function to improve the generative model. As a proof of concept, we demonstrate that this system is successful at improving positive interaction rates simulated from a variety of objectives, and characterize some factors that affect its performance.

Research Areas