Improved FPT Approximation Scheme and Approximate Kernel for Biclique-Free Max k-Weight SAT: Greedy Strikes Back
Abstract
In the Max k-Weight SAT (aka Max SAT with Cardinality Constraint) problem, we are given a CNF formula with n variables and m clauses together with a positive integer k. The goal is to find an assignment where at most k variables are set to one that satisfies as many constraints as possible. Recently, Jain et al. (SODA 2023) gave an FPT approximation scheme (FPT-AS) with running time 2^O((dk/ε)^d) * (n + m)^O(1) for Max k-Weight SAT when the incidence graph is K_{d,d}-free. They asked whether a polynomial-size approximate kernel exists. In this work, we answer this question positively by giving an (1 − ε)-approximate kernel with (dk/ε)^O(d) variables. This also implies an improved FPT-AS with running time (dk/ε)^O(dk) * (n+m)^O(1)-time algorithm for the problem. Our approximate kernel is based mainly on a couple of greedy strategies together with a sunflower lemma-style reduction rule.