From the Observability TAG: Designing a Common Query Language for Observability Data
Abstract
Unifying query languages is key in reducing toil for app developers and end users to query and analyze observability data. A common query language that can leverage all observability data such as metrics, traces, profiles, events, logs to facilitate correlation, support trend analytics and provide end-to-end observability for AI applications. The Observability TAG QLS workgroup is finalizing a semantic query language spec in 2025 and is recommending SQL as a basis with further experimentation on syntaxes. This talk will explore the design principles, user research and challenges of creating a query language to support observability goals. It will delve into the core concepts, syntax, and semantics of SQL operators and its needed syntactic sugar, while addressing the unique requirements of observability data. It will also explore the trade-offs between simplicity, expressiveness, and performance. This query language convergence for end-to-end analytics could enhance reliability and operational efficiency for SREs and your app developers. A win-win for all.