Faster electronic structure quantum simulation by spectrum amplification

Guang Hao Low
Robbie King
Alec White
Rolando Somma
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
arXiv (2025) (to appear)

Abstract

We discover that many interesting electronic structure Hamiltonians have a compact and close-to-frustration-free sum-of-squares representation with a small energy gap. We show that this gap enables spectrum amplification in estimating ground state energies, which improves the cost scaling of previous approaches from the block-encoding normalization factor $\lambda$ to just $\sqrt{\lambda E_{\text{gap}}}$. For any constant-degree polynomial basis of fermionic operators, a sum-of-squares representation with optimal gap can be efficiently computed using semi-definite programming. Although the gap can be made arbitrarily small with an exponential-size basis, we find that the degree-$2$ spin-free basis in combination with approximating two-body interactions by a new Double-Factorized (DF) generalization of Tensor-Hyper-Contraction (THC) gives an excellent balance of gap, $\lambda$, and block-encoding costs. For classically-hard FeMoco complexes -- candidate applications for first useful quantum advantage -- this combination improves the Toffoli gates cost of the first estimates with DF [Phys. Rev. Research 3, 033055] or THC [PRX Quantum 2, 030305] by over two orders of magnitude.

https://drive.google.com/file/d/1hw4zFv_X0GeMpE4et6SS9gAUM9My98iJ/view?usp=sharing