Enhancing Column Average CO2 tracking with GOES East

Aarón Sonabend
Anna Michalak
(2025)
Google Scholar

Abstract

The need for characterizing global variability of atmospheric carbon dioxide (CO2) is quickly increasing, with a growing urgency for tracking greenhouse gasses with sufficient resolution, precision and accuracy so as to support independent verification of CO2 fluxes at local to global scales. The current generation of space-based sensors, however, can only provide sparse observations in space and/or in time, by design. While upcoming missions may address some of these challenges, most are still years away from launch. This challenge has fueled interest in the potential use of data from existing missions originally developed for other applications for inferring global greenhouse gas variability.
The Advanced Baseline Imager (ABI) onboard the Geostationary Operational Environmental Satellite (GOES-East), operational since 2017, provides full coverage of much of the western hemisphere at 10-minute intervals from geostationary orbit at 16 wavelengths. We leverage this high temporal resolution by developing a single-pixel, fully-connected neural network to estimate dry-air column CO2 mole fractions (XCO2). The model employs a time series of GOES-East's 16 spectral bands, which aids in disentangling atmospheric CO2 from surface reflectance, alongside ECMWF ERA5 lower tropospheric meteorology, solar angles, and day of year. Training used collocated GOES-East and OCO-2/OCO-3 observations (2017-2020, within 5 km and 10 minutes), with validation and testing performed on 2021 data.
The model successfully captures monthly latitudinal XCO2 gradients and shows reasonable agreement with ground-based TCCON measurements. Furthermore, we demonstrate the model's ability to detect elevated XCO2 signals from high-emitting power plants, particularly over low-reflectance surfaces. We also confirm that removing bands 5 (1.6 µm) and 16 (13.3 µm) substantially decreases performance, indicating that the model is able to extract useful information from these bands.
Although GOES-East derived XCO2 precision may not rival dedicated instruments, its unprecedented combination of contiguous geographic coverage, 10-minute temporal frequency, and multi-year record offers the potential to observe aspects of atmospheric CO2 variability currently unseen from space, with further potential through spatio-temporal aggregation.