Do Language Embeddings capture Scales?

Xikun Zhang
Yanai Elazar
Dan Roth
Google Scholar


We show that embedding-based language models capture a significant amount of information about the scalar magnitudes of objects but are short of the capability required for general common-sense reasoning. We identify ambiguity and numeracy as the key factors limiting their performance, and show that a simple reversible transformation of the pre-training corpus can have a significant effect on the results. We identify the best models and metrics to use when doing zero-shot transfer across tasks in this domain.