Deep Learning Seismology
Abstract
Seismology is the study of seismic waves to understand their origin—most obviously, sudden fault slip in earthquakes, but also explosions, volcanic eruptions, glaciers, landslides, ocean waves, vehicular traffic, aircraft, trains, wind, air guns, and thunderstorms, for example. Seismology uses those same waves to infer the structure and properties of planetary interiors. Because sources can generate waves at any time, seismic ground motion is recorded continuously, at typical sampling rates of 100 points per second, for three components of motion, and on arrays that can include thousands of sensors. Although seismology is clearly a data-rich science, it often is a data-driven science as well, with new phenomena and unexpected behavior discovered with regularity. And for at least some tasks, the careful and painstaking work of seismic analysts over decades and around the world has also made seismology a data label–rich science. This facet makes it fertile ground for deep learning, which has entered almost every subfield of seismology and outperforms classical approaches, often dramatically, for many seismological tasks.