Jump to Content

Deblurring via Stochastic Refinement

Jay Whang
Chitwan Saharia
Alexandros Dimakis
CVPR (2022)


Image deblurring is an ill-posed problem with multiple plausible solutions given a single input image. However, most existing methods produce a deterministic estimate of the clean image and are trained to minimize pixel-level distortion. These metrics are known to be poorly correlated with human perception, and often lead to unrealistic reconstructions. We present an alternative framework for single-image blind deblurring based on conditional diffusion models. Unlike existing techniques, we train a stochastic sampler that refines the output of a deterministic predictor and is capable of producing a diverse set of plausible reconstructions for a single input. This leads to a significant improvement in perceptual quality over existing state-of-the-art methods across multiple standard benchmarks. Our predict-and-refine approach also enables much more efficient sampling compared to the standard diffusion model. Combined with a carefully tuned network architecture and inference procedure, our method is shown to be competitive in terms of traditional quantitative distortion metrics such as PSNR. These results show clear benefits of stochastic diffusion-based methods for deblurring and challenge the widely used strategy of producing a single, deterministic reconstruction.