Associating Objects and their Effects in Unconstrained Monocular Video

Erika Lu
Zhengqi Li
Leonid Sigal
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2023
Google Scholar

Abstract

We propose a method to decompose a video into a back- ground and a set of foreground layers, where the back- ground captures stationary elements while the foreground layers capture moving objects along with their associated effects (e.g. shadows and reflections). Our approach is de- signed for unconstrained monocular videos, with arbitrary camera and object motion. Prior work that tackles this problem assumes that the video can be mapped onto a fixed 2D canvas, severely limiting the possible space of camera motion. Instead, our method applies recent progress in monocular camera pose and depth estimation to create a full, RGBD video layer for the background, along with a video layer for each foreground object. To solve the under- constrained decomposition problem, we propose a new loss formulation based on multi-view consistency. We test our method on challenging videos with complex camera motion and show significant qualitative improvement over current methods.

Research Areas