ADCanvas: Accessible and Conversational Audio Description Authoring for Blind and Low Vision Creators

Franklin Li
Michael Xieyang Liu
2026

Abstract

Audio Description ( AD) provides essential access to visual media for blind and low vision ( BLV) audiences. Yet current AD production tools remain largely inaccessible to BLV video creators, who possess valuable expertise but face barriers due to visually- driven interfaces. We present ADCanvas, a multimodal authoring system that supports non- visual control
over audio description ( AD) creation. ADCanvas combines conversational interaction with keyboard- based playback control and a plain- text, screen reader–
accessible editor to support end- to- end AD authoring and visual question answering ( VQA). Combining screen- reader- friendly controls with a multimodal
LLM agent, ADCanvas supports live VQA, script generation, and AD modification. Through a user study with 12 BLV video creators, we find that users adopt
the conversational agent as an informational aide and drafting assistant, while maintaining agency through verification and editing. For example, participants
saw themselves as curators who received information from the model and filtered it down for their audience. Our findings offer design implications for
accessible media tools, including precise editing controls, accessibility support for creative ideation, and configurable rules for human- AI collaboration.
×