Jump to Content

Accelerated search and design for stretchable graphene kirigami using machine learning

Paul Z Hanakata
David K. Campbell
Harold S. Park
Physical Review Letters, vol. 121 (2018), pp. 255304


Making kirigami-inspired cuts into a sheet has been shown to be an effective way of designing stretchable materials with metamorphic properties where the 2D shape can transform into complex 3D shapes. However, finding the optimal solutions is not straightforward as the number of possible cutting patterns grows exponentially with system size. Here, we report on how machine learning (ML) can be used to approximate the target properties, such as yield stress and yield strain, as a function of cutting pattern. Our approach enables the rapid discovery of kirigami designs that yield extreme stretchability as verified by classical molecular dynamics (MD) simulations. We find that convolutional neural networks (CNN), commonly used for classification in vision tasks, can be applied for regression to achieve an accuracy close to the precision of the MD simulations. This approach can then be used to search for optimal designs that maximize elastic stretchability with only 1000 training data in a large design space of $\sim 4\times10^6$ candidate designs. This example demonstrates the power and potential of ML in finding optimal kirigami designs at a fraction of iterations that would be required of a purely MD or experiment-based approach, where no prior knowledge of the governing physics is known or available.