Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10129 publications
    Artificial Intelligence in Healthcare: A Perspective from Google
    Lily Peng
    Lisa Lehmann
    Artificial Intelligence in Healthcare, Elsevier (2024)
    Preview abstract Artificial Intelligence (AI) holds the promise of transforming healthcare by improving patient outcomes, increasing accessibility and efficiency, and decreasing the cost of care. Realizing this vision of a healthier world for everyone everywhere requires partnerships and trust between healthcare systems, clinicians, payers, technology companies, pharmaceutical companies, and governments to drive innovations in machine learning and artificial intelligence to patients. Google is one example of a technology company that is partnering with healthcare systems, clinicians, and researchers to develop technology solutions that will directly improve the lives of patients. In this chapter we share landmark trials of the use of AI in healthcare. We also describe the application of our novel system of organizing information to unify data in electronic health records (EHRs) and bring an integrated view of patient records to clinicians. We discuss our consumer focused innovation in dermatology to help guide search journeys for personalized information about skin conditions. Finally, we share a perspective on how to embed ethics and a concern for all patients into the development of AI. View details
    Preview abstract This document specifies how to augment the Routing Policy Specification Language (RPSL) inetnum: class to refer specifically to geofeed comma-separated values (CSV) data files and describes an optional scheme that uses the Resource Public Key Infrastructure (RPKI) to authenticate the geofeed data files. This document obsoletes RFC 9092. View details
    Preview abstract We present SPHEAR, an accurate, differentiable parametric statistical 3D human head model, enabled by a novel 3D registration method based on spherical embeddings. We shift the paradigm away from the classical Non-Rigid Registration methods, which operate under various surface priors, increasing reconstruction fidelity and minimizing required human intervention. Additionally, SPHEAR is a complete model that allows not only to sample diverse synthetic head shapes and facial expressions, but also gaze directions, high-resolution color textures, surface normal maps, and hair cuts represented in detail, as strands. SPHEAR can be used for automatic realistic visual data generation, semantic annotation, and general reconstruction tasks. Compared to state-of-the-art approaches, our components are fast and memory efficient, and experiments support the validity of our design choices and the accuracy of registration, reconstruction and generation techniques. View details
    Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
    Daniel Klotz
    Martin Gauch
    Frederik Kratzert
    Jakob Zscheischler
    Hydrology and Earth System Sciences (2024)
    Preview abstract The evaluation of model performance is an essential part of hydrological modeling. However, leveraging the full information that performance criteria provide requires a deep understanding of their properties. This Technical Note focuses on a rather counterintuitive aspect of the perhaps most widely used hydrological metric, the Nash–Sutcliffe efficiency (NSE). Specifically, we demonstrate that the overall NSE of a dataset is not bounded by the NSEs of all its partitions. We term this phenomenon the “divide and measure nonconformity”. It follows naturally from the definition of the NSE, yet because modelers often subdivide datasets in a non-random way, the resulting behavior can have unintended consequences in practice. In this note we therefore discuss the implications of the divide and measure nonconformity, examine its empirical and theoretical properties, and provide recommendations for modelers to avoid drawing misleading conclusions. View details
    Triply efficient shadow tomography
    Robbie King
    David Gosset
    arXiv:2404.19211 (2024)
    Preview abstract Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error. View details
    Rambler: Supporting Writing With Speech via LLM-Assisted Gist Manipulation
    Susan Lin
    Jeremy Warner
    J.D. Zamfirescu-Pereira
    Matthew G Lee
    Sauhard Jain
    Michael Xuelin Huang
    Bjoern Hartmann
    Can Liu
    Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA
    Preview abstract Dictation enables efficient text input on mobile devices. However, writing with speech can produce disfluent, wordy, and incoherent text and thus requires heavy post-processing. This paper presents Rambler, an LLM-powered graphical user interface that supports gist-level manipulation of dictated text with two main sets of functions: gist extraction and macro revision. Gist extraction generates keywords and summaries as anchors to support the review and interaction with spoken text. LLM-assisted macro revisions allow users to respeak, split, merge, and transform dictated text without specifying precise editing locations. Together they pave the way for interactive dictation and revision that help close gaps between spontaneously spoken words and well-structured writing. In a comparative study with 12 participants performing verbal composition tasks, Rambler outperformed the baseline of a speech-to-text editor + ChatGPT, as it better facilitates iterative revisions with enhanced user control over the content while supporting surprisingly diverse user strategies. View details
    Neural Speech and Audio Coding
    Minje Kim
    IEEE Signal Processing Magazine (2024) (to appear)
    Preview abstract This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs’ output, along with the autoencoder-based end-to-end models and LPCNet—hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques. View details
    Preview abstract A recent large-scale experiment conducted by Chrome has demonstrated that a "quieter" web permission prompt can reduce unwanted interruptions while only marginally affecting grant rates. However, the experiment and the partial roll-out were missing two important elements: (1) an effective and context-aware activation mechanism for such a quieter prompt, and (2) an analysis of user attitudes and sentiment towards such an intervention. In this paper, we address these two limitations by means of a novel ML-based activation mechanism -- and its real-world on-device deployment in Chrome -- and a large-scale user study with 13.1k participants from 156 countries. First, the telemetry-based results, computed on more than 20 million samples from Chrome users in-the-wild, indicate that the novel on-device ML-based approach is both extremely precise (>99% post-hoc precision) and has very high coverage (96% recall for notifications permission). Second, our large-scale, in-context user study shows that quieting is often perceived as helpful and does not cause high levels of unease for most respondents. View details
    KATch: A Fast Symbolic Verifier for NetKAT
    Mark Moeller
    Jules Jacobs
    Olivier Savary Belanger
    David Darais
    Cole Schlesinger
    Nate Foster
    Alexandra Silva
    Programming Languages and Implementation (PLDI) (2024) (to appear)
    Preview abstract We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches. View details
    Preview abstract As with many machine learning problems, the progress of image generation methods hinges on good evaluation metrics. One of the most popular is the Frechet Inception Distance (FID). FID estimates the distance between a distribution of Inception-v3 features of real images, and those of images generated by the algorithm. We highlight important drawbacks of FID: Inception's poor representation of the rich and varied content generated by modern text-to-image models, incorrect normality assumptions, and poor sample complexity. We call for a reevaluation of FID's use as the primary quality metric for generated images. We empirically demonstrate that FID contradicts human raters, it does not reflect gradual improvement of iterative text-to-image models, it does not capture distortion levels, and that it produces inconsistent results when varying the sample size. We also propose an alternative new metric, CMMD, based on richer CLIP embeddings and the maximum mean discrepancy distance with the Gaussian RBF kernel. It is an unbiased estimator that does not make any assumptions on the probability distribution of the embeddings and is sample efficient. Through extensive experiments and analysis, we demonstrate that FID-based evaluations of text-to-image models may be unreliable, and that CMMD offers a more robust and reliable assessment of image quality. View details
    Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians
    Mark Chia
    Fred Hersch
    Pearse Keane
    Angus Turner
    British Journal of Ophthalmology, 108 (2024), pp. 268-273
    Preview abstract Background/aims: Deep learning systems (DLSs) for diabetic retinopathy (DR) detection show promising results but can underperform in racial and ethnic minority groups, therefore external validation within these populations is critical for health equity. This study evaluates the performance of a DLS for DR detection among Indigenous Australians, an understudied ethnic group who suffer disproportionately from DR-related blindness. Methods: We performed a retrospective external validation study comparing the performance of a DLS against a retinal specialist for the detection of more-than-mild DR (mtmDR), vision-threatening DR (vtDR) and all-cause referable DR. The validation set consisted of 1682 consecutive, single-field, macula-centred retinal photographs from 864 patients with diabetes (mean age 54.9 years, 52.4% women) at an Indigenous primary care service in Perth, Australia. Three-person adjudication by a panel of specialists served as the reference standard. Results: For mtmDR detection, sensitivity of the DLS was superior to the retina specialist (98.0% (95% CI, 96.5 to 99.4) vs 87.1% (95% CI, 83.6 to 90.6), McNemar’s test p<0.001) with a small reduction in specificity (95.1% (95% CI, 93.6 to 96.4) vs 97.0% (95% CI, 95.9 to 98.0), p=0.006). For vtDR, the DLS’s sensitivity was again superior to the human grader (96.2% (95% CI, 93.4 to 98.6) vs 84.4% (95% CI, 79.7 to 89.2), p<0.001) with a slight drop in specificity (95.8% (95% CI, 94.6 to 96.9) vs 97.8% (95% CI, 96.9 to 98.6), p=0.002). For all-cause referable DR, there was a substantial increase in sensitivity (93.7% (95% CI, 91.8 to 95.5) vs 74.4% (95% CI, 71.1 to 77.5), p<0.001) and a smaller reduction in specificity (91.7% (95% CI, 90.0 to 93.3) vs 96.3% (95% CI, 95.2 to 97.4), p<0.001). Conclusion: The DLS showed improved sensitivity and similar specificity compared with a retina specialist for DR detection. This demonstrates its potential to support DR screening among Indigenous Australians, an underserved population with a high burden of diabetic eye disease. View details
    A Decentralized SDN Architecture for the WAN
    Nitika Saran
    Ashok Narayanan
    Sylvia Ratnasamy
    Ankit Singla
    Hakim Weatherspoon
    2024 ACM Special Interest Group on Data Communication (SIGCOMM) (2024)
    Preview abstract Motivated by our experiences operating a global WAN, we argue that SDN’s reliance on infrastructure external to the data plane has significantly complicated the challenge of maintaining high availability. We propose a new decentralized SDN (dSDN) architecture in which SDN control logic instead runs within routers, eliminating the control plane’s reliance on external infrastructure and restoring fate sharing between control and data planes. We present dSDN as a simpler approach to realizing the benefits of SDN in the WAN. Despite its much simpler design, we show that dSDN is practical from an implementation viewpoint, and outperforms centralized SDN in terms of routing convergence and SLO impact. View details
    Preview abstract Understanding complex relationships between human behavior and local contexts is crucial for various applications in public health, social science, and environmental studies. Traditional approaches often make use of small sets of manually curated, domain-specific variables to represent human behavior, and struggle to capture these intricate connections, particularly when dealing with diverse data types. To address this challenge, this work introduces a novel approach that leverages the power of graph neural networks (GNNs). We first construct a large dataset encompassing human-centered variables aggregated at postal code and county levels across the United States. This dataset captures rich information on human behavior (internet search behavior and mobility patterns) along with environmental factors (local facility availability, temperature, and air quality). Next, we propose a GNN-based framework designed to encode the connections between these diverse features alongside the inherent spatial relationships between postal codes and their containing counties. We then demonstrate the effectiveness of our approach by benchmarking the model on 27 target variables spanning three distinct domains: health, socioeconomic factors, and environmental measurements. Through spatial interpolation, extrapolation, and super-resolution tasks, we show that the proposed method can effectively utilize the rich feature set to achieve accurate predictions across diverse geospatial domains. View details
    Preview abstract Recent studies have highlighted the issue of varying degrees of stereotypical depictions for different identity group. However, these existing approaches have several key limitations, including a noticeable lack of coverage of identity groups in their evaluation, and the range of their associated stereotypes. Additionally, these studies often lack a critical distinction between inherently visual stereotypes, such as `brown' or `sombrero', and culturally influenced stereotypes like `kind' or `intelligent'. In this work, we address these limitations by grounding our evaluation of regional, geo-cultural stereotypes in the generated images from Text-to-Image models by leveraging existing textual resources. We employ existing stereotype benchmarks to evaluate stereotypes and focus exclusively on the identification of visual stereotypes within the generated images spanning 135 identity groups. We also compute the offensiveness across identity groups, and check the feasibility of identifying stereotypes automatically. Further, through a detailed case study and quantitative analysis, we reveal how the default representations of all identity groups have a more stereotypical appearance, and for historically marginalized groups, how the images across different attributes are visually more similar than other groups, even when explicitly prompted otherwise. View details
    Heterogeneous LoRA for Federated Fine-tuning of On-Device Foundation Models
    Yae Jee Cho
    Aldi Fahrezi
    Gauri Joshi
    The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024) (2024)
    Preview abstract Foundation models (FMs) adapt well to specific domains or tasks with fine-tuning, and federated learning (FL) enables the potential for privacy-preserving fine-tuning of the FMs with on-device local data. For federated fine-tuning of FMs, we consider the FMs with small to medium parameter sizes of single digit billion at maximum, referred to as on-device FMs (ODFMs) that can be deployed on devices for inference but can only be fine-tuned with parameter efficient methods. In our work, we tackle the data and system heterogeneity problem of federated fine-tuning of ODFMs by proposing a novel method using heterogeneous low-rank approximations (LoRAs), namely HetLoRA. First, we show that the naive approach of using homogeneous LoRA ranks across devices face a trade-off between overfitting and slow convergence, and thus propose HetLoRA, which allows heterogeneous ranks across client devices and efficiently aggregates and distributes these heterogeneous LoRA modules. By applying rank self-pruning locally and sparsity-weighted aggregation at the server, HetLoRA combines the advantages of high and low-rank LoRAs, which achieves improved convergence speed and final performance compared to homogeneous LoRA. Furthermore, HetLoRA offers enhanced computation efficiency compared to full fine-tuning, making it suitable for federated fine-tuning across heterogeneous devices. View details