Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10270 publications
InstructPipe: Building Visual Programming Pipelines in Visual Blocks with Human Instructions Using LLMs
Alex Olwal
Mark Sherwood
Jing Jin
Na Li
Jingtao Zhou
Jun Jiang
Ram Iyengar
Zhongyi Zhou
Yiyi Huang
Kristen Wright
Xiuxiu Yuan
Jason Mayes
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract
Visual programming provides beginner-level programmers with a coding-free experience to build their customized pipelines. Existing systems require users to build a pipeline entirely from scratch, implying that novice users need to set up and link appropriate nodes all by themselves, starting from a blank workspace. We present InstructPipe, an AI assistant that enables users to start prototyping machine learning (ML) pipelines with text instructions. We designed two LLM modules and a code interpreter to execute our solution. LLM modules generate pseudocode of a target pipeline, and the interpreter renders a pipeline in the node-graph editor for further human-AI collaboration. Technical evaluations reveal that InstructPipe reduces user interactions by 81.1% compared to traditional methods. Our user study (N=16) showed that InstructPipe empowers novice users to streamline their workflow in creating desired ML pipelines, reduce their learning curve, and spark innovative ideas with open-ended commands.
View details
Beyond Touchscreens: Designing for Co-Occurring Accessibility Needs
Melissa Barnhart Wantland
Mai Kobori
Universal Access in Human-Computer Interaction, Springer-Verlag (2025) (to appear)
Preview abstract
Today’s smartphone interactions are typically designed with one primary preset, accompanied by customization settings that can be manually adjusted. To promote the creation of contextually aware experiences, researchers have highlighted the factors that influence mobile device usage in the ability-based design framework. This paper expands upon existing frameworks and contributes to an empirical understanding of smartphone accessibility. Through a 10-day longitudinal diary study and video interview with 24 individuals who do and do not identify as having a disability, the research also illustrates the reactions of reattempt, adaptation, and avoidance, which were used in response to a lack of smartphone accessibility. Despite experiencing scenarios where accessibility settings could be leveraged, 20 out of 24 participants did not use accessibility settings on their smartphone. A total of 12 out of 24 participants tried accessibility settings on their smartphones, however identifying accessibility was not for them. This work highlights the need to shift current design practices to better serve the accessibility community.
View details
Avoid global outages by partitioning cloud applications to reduce blast radius
https://cloud.google.com/ (2025)
Preview abstract
Cloud application development faces the inherent challenge of balancing rapid innovation with high availability. This blog post details how Google Workspace's Site Reliability Engineering team addresses this conflict by implementing vertical partitioning of serving stacks. By isolating application servers and storage into distinct partitions, the "blast radius" of code changes and updates is significantly reduced, minimizing the risk of global outages. This approach, which complements canary deployments, enhances service availability, provides flexibility for experimentation, and facilitates data localization. While challenges such as data model complexities and inter-service partition misalignment exist, the benefits of improved reliability and controlled deployments make partitioning a crucial strategy for maintaining robust cloud applications
View details
Gemini & Physical World: Large Language Models Can Estimate the Intensity of Earthquake Shaking from Multi-Modal Social Media Posts
Aman Raj
Marc Stogaitis
Youngmin Cho
Richard Allen
Patrick Robertson
Robert Bosch
Nivetha Thiruverahan
Alexei Barski
Tajinder Gadh
Geophysical Journal International (2025), ggae436
Preview abstract
This paper presents a novel approach for estimating the ground shaking intensity using real-time social media data and CCTV footage. Employing the Gemini 1.5 Pro’s (Reid et al. 2024) model, a multi-modal language model, we demonstrate the ability to extract relevant information from unstructured data utilizing generative AI and natural language processing. The model’s output, in the form of Modified Mercalli Intensity (MMI) values, align well with independent observational data. Furthermore, our results suggest that beyond its advanced visual and auditory understanding abilities, Gemini appears to utilize additional sources of knowledge, including a simplified understanding of the general relationship between earthquake magnitude, distance, and MMI intensity, which it presumably acquired during its training, in its reasoning and decision-making processes. These findings raise intriguing questions about the extent of Gemini's general understanding of the physical world and its phenomena. Gemini’s ability to generate results consistent with established scientific knowledge highlights the potential of LLMs like Gemini in augmenting our understanding of complex physical phenomena such as earthquakes. More specifically, the results of this study highlight the potential of LLMs like Gemini to revolutionize citizen seismology by enabling rapid, effective, and flexible analysis of crowdsourced data from eyewitness accounts for assessing earthquake impact and providing crisis situational awareness. This approach holds a great promise for improving early warning systems, disaster response, and overall resilience in earthquake-prone regions. This study provides a significant step toward harnessing the power of social media and AI for earthquake disaster mitigation.
View details
AI as a Catalyst for Educational Equity: Addressing Global Teacher Shortages and Learning Disparities
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCERT) (2025)
Preview abstract
The global education system is grappling with a critical shortage of teachers, threatening the achievement of universal quality education. This article examines how artificial intelligence (AI) technologies can revolutionize educational access and equity by addressing these systemic challenges. Through a comprehensive article analysis of AI-enabled solutions, including personalized learning mechanisms, virtual tutoring systems, and intelligent content distribution platforms, the article explores the transformative potential of these technologies in democratizing education. The article investigates the implementation of AI across established educational platforms, examining their effectiveness in providing adaptive learning experiences, breaking down language barriers, and ensuring cultural relevance. The article demonstrates that strategic AI integration can significantly impact learning outcomes while helping to bridge the global teacher shortage gap. The article also addresses critical implementation challenges, providing policy recommendations and resource allocation frameworks for successful AI adoption in education systems worldwide. This article analysis contributes to the growing body of knowledge on educational technology by offering practical insights into how AI can be leveraged to create more inclusive, effective, and accessible learning environments, ultimately advancing the goal of quality education for all.
View details
SSDTrain: Faster Large Language Model Training Using SSD-Based Activation Offloading
Mert Hidayetoğlu
Steven Lumetta
Kun Wu
Sitao Huang
Jeongmin Brian Park
Wen-mei Hwu
Vikram Sharma Mailthody
Design Automation Conference (DAC) (2025)
Preview abstract
The scaling up of Large Language Models (LLMs) demands more memory than current GPUs can provide, hindering the training process. To address this challenge, we propose SSDTrain to efficiently offload activations, the intermediate tensors produced during LLM training, to SSDs. This approach reduces GPU memory usage without impacting performance by adaptively overlapping data transfers with computation. SSDTrain is compatible with popular deep learning frameworks like PyTorch, Megatron, and DeepSpeed, and it employs techniques such as tensor deduplication, forwarding, and adaptive offloading to further enhance efficiency. We conduct extensive experiments on Llama, BERT, and T5. Results demonstrate that SSDTrain effectively reduces 45% of the activation peak memory usage. It can perfectly overlap the IO with the computation without introducing performance penalty. SSDTrain can achieve a performance boost of up to 31% compared to the conventional training strategy using the same GPU systems.
View details
Society-Centric Product Innovation in the Era of Customer Obsession
International Journal of Science and Research Archive (IJSRA), Volume 14 - Issue 1 (2025)
Preview abstract
This article provides a comprehensive analysis of the evolving landscape of innovation in the technology sector, with a focus on the intersection of technological progress and social responsibility. The article explores key challenges facing the industry, including public trust erosion, digital privacy concerns, and the impact of automation on workforce dynamics. It investigates responsible innovation frameworks' emergence and implementation across various organizations, highlighting the transformation from traditional development approaches to more society-centric models. The article demonstrates how companies balance innovation speed with social responsibility, incorporate ethical considerations into their development processes, and address digital disparities across different demographics. By examining how companies balance the pace of innovation with ethical responsibilities, integrate social considerations into their processes, and address digital inequities across diverse demographics, the article underscores the transformative potential of these frameworks. Through insights into cross-functional teams, impact assessment tools, and stakeholder engagement strategies, it demonstrates how responsible innovation drives both sustainable business value and societal progress.
View details
Governance, Risk and Compliance (GRC) Engineering: Data, AI, Automation, and the Future of Compliance to Audits
Eric Zhang
Ruchi Khurana
Vikram Khare
2025
Preview abstract
In today's rapidly evolving business landscape, Governance, Risk, and Compliance (GRC) leaders in large, complex organizations face unprecedented challenges. The cloud has revolutionized how businesses operate, offering unprecedented scalability, flexibility, cost-efficiency, additional security and resilience. However, this transformation also presents new challenges for GRC professionals. In a cloud-native world, where applications are built and deployed in dynamic, distributed environments, traditional GRC on-prem approaches, manual processes and spreadsheets struggle to keep pace. The key to success lies in embracing a data-driven GRC strategy that leverages the power of the cloud to enhance agility, visibility, and resilience.
View details
Preview abstract
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2--10% for Gemini, GPT, and Gemma.
View details
Preview abstract
We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content.
View details
Online Bidding under RoS Constraints without Knowing the Value
Sushant Vijayan
Swati Padmanabhan
The Web Conference (2025)
Preview abstract
We consider the problem of auto-bidding in online advertising from the perspective of a single advertiser. The goal of the advertiser is to maximize their value under the Return-on-Spend (RoS) constraint, with performance measured in terms of \emph{regret} against the optimal offline solution that knows all queries a priori. Importantly, the value of the item is \textit{unknown} to the bidder ahead of time. The goal of the bidder is to quickly identify the optimal bid, while simultaneously satisfying budget and RoS constraints. Using a simple UCB-style algorithm, we provide the first result which achieves optimal regret and constraint violation for this problem.
View details
Preview abstract
We study the existence of almost fair and near-optimal solutions to a routing problem as defined in the seminal work of Rosenthal. We focus on the setting where multiple alternative routes are available for each potential request (which corresponds to a potential user of the network). This model captures a collection of diverse applications such as packet routing in communication networks, routing in road networks with multiple alternative routes, and the economics of transportation of goods.
Our recommended routes have provable guarantees in terms of both the total cost and fairness concepts such as approximate envy-freeness. We employ and appropriately combine tools from algorithmic game theory and fair division. Our results apply on two distinct models: the splittable case where the request is split among the selected paths (e.g., routing a fleet of trucks) and the unsplittable case where the request is assigned to one of its designated paths (e.g., a single user request). Finally, we conduct an empirical analysis to test the performance of our approach against simpler baselines using the real world road network of New York City.
View details
Preview abstract
https://www.overleaf.com/project/65ba7d45dae2bce751dba252
Hashing is a fundamental operation in various computer sci-
ence applications. Despite the prevalence of specific key
formats like social security numbers, MAC addresses, plate
numbers, and URLs, hashing libraries typically treat them as
general byte sequences. This paper introduces a technique
for synthesizing specialized hash functions tailored to par-
ticular byte formats. The proposed code generation method
leverages three prevalent patterns: (i) fixed-length keys, (ii)
keys with common subsequences, and (iii) keys ranging on
predetermined sequences of bytes. The code generation pro-
cess involves two algorithms: one identifies relevant regular
expressions within key examples, and the other generates
specialized hash functions based on these expressions. This
approach, straightforward to implement, showcases improve-
ments over highly optimized hash function implementations.
Comparative analysis demonstrates that our synthetic func-
tions outperform counterparts in the C++ Standard Template
Library and the Google Abseil Library, achieving speedups
ranging from 2% to 11%, depending on the key format.
View details
SMaCk: Efficient Instruction Cache Attacks via Self-Modifying Code Conflicts
Seonghun Son
Berk Gulmezoglu
ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS) (2025) (to appear)
Preview abstract
Self-modifying code (SMC) allows programs to alter their own instructions, optimizing performance and functionality on x86 processors. Despite its benefits, SMC introduces unique microarchitectural behaviors that can be exploited for malicious purposes. In this paper, we explore the security implications of SMC by examining how specific x86 instructions affecting instruction cache lines lead to measurable timing discrepancies between cache hits and misses. These discrepancies facilitate refined cache attacks, making them less noisy and more effective. We introduce novel attack techniques that leverage these timing variations to enhance existing methods such as Prime+Probe and Flush+Reload. Our advanced techniques allow adversaries to more precisely attack cryptographic keys and create covert channels akin
to Spectre across various x86 platforms. Finally, we propose a dynamic detection methodology utilizing hardware performance counters to mitigate these enhanced threats.
View details