Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10822 publications
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    mmMUSE: An mmWave-based Motion-resilient Universal Speech Enhancement System
    Chenming He
    Yanyong Zhang
    Kai Wang
    Dequan Wang
    Lingyu Wang
    the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), ACM (2026) (to appear)
    Preview abstract Voice-based smart systems can greatly enhance user experiences by allowing higher-quality interactions through better voice perception. Speech enhancement can benefit such systems by isolating noise from speech. Recently, integrating millimeter-wave (mmWave) with audio for speech perception has gained increasing attention due to microphones' limitations in noisy environments. However, mmWave-based vocal extraction is severely affected by motion, which disperses vocal signals across ranges and introduces distortions. In this paper, we propose an mmWave-based motion-resilient universal speech enhancement system called mmMUSE, which fuses mmWave and audio signals. To mitigate motion interference, we develop a Doppler-based method for motion-robust vocal signal extraction. Moreover, by introducing the Vocal-Noise-Ratio metric to assess the prominence of vocal signals from mmWave, we achieve real-time voice activity detection that gains 3.81 dB of SISDR in noisy speeches. Additionally, we design a two-stage complex-valued network that includes an attention-based fusion network for cross-modal complementing and a time-frequency masking network for correcting amplitude and phase of speech to isolate noises. Using mmWave and audio datasets from 46 participants, mmMUSE outperforms the state-of-the-art speech enhancement models, achieving an average SISDR improvement of 3.12 dB. Additionally, mmMUSE achieves SISDR improvements of 16.51 dB, 17.93 dB, 14.93 dB, and 18.95 dB in controlled environments involving intense noise, extensive motion, multiple speakers, and various obstructive materials, respectively. Finally, we evaluate mmMUSE in real-world scenarios including running, public spaces, and driving, maintaining a word error rate (WER) below 10%. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks
    Saptarashmi Bandyopadhyay
    Vikas Bahirwani
    Lavisha Aggarwal
    Bhanu Guda
    Lin Li
    Andrea Colaco
    2025
    Preview abstract Multimodal AI Agents are AI models that have the capability of interactively and cooperatively assisting human users to solve day-to-day tasks. Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks by providing egocentric multimodal (audio and video) observational capabilities to AI Agents. Such AR capabilities can help the AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users. Existing AI Agents, either Large Language Models (LLMs) or Multimodal Vision-Language Models (VLMs) are reactive in nature, which means that models cannot take an action without reading or listening to the human user's prompts. Proactivity of AI Agents, on the other hand, can help the human user detect and correct any mistakes in agent observed tasks, encourage users when they do tasks correctly, or simply engage in conversation with the user - akin to a human teaching or assisting a user. Our proposed YET to Intervene (YETI) multimodal Agent focuses on the research question of identifying circumstances that may require the Agent to intervene proactively. This allows the Agent to understand when it can intervene in a conversation with human users that can help the user correct mistakes on tasks, like cooking, using Augmented Reality. Our YETI Agent learns scene understanding signals based on interpretable notions of Structural Similarity (SSIM) on consecutive video frames. We also define the alignment signal which the AI Agent can learn to identify if the video frames corresponding to the user's actions on the task are consistent with expected actions. These signals are used by our AI Agent to determine when it should proactively intervene. We compare our results on the instances of proactive intervention in the HoloAssist multimodal benchmark for an expert agent guiding an user agent to complete procedural tasks. View details
    Quantum Simulation of Chemistry via Quantum Fast Multipole Transform
    Dominic Berry
    Kianna Wan
    Andrew Baczewski
    Elliot Eklund
    Arkin Tikku
    arXiv:2510.07380 (2025)
    Preview abstract Here we describe an approach for simulating quantum chemistry on quantum computers with significantly lower asymptotic complexity than prior work. The approach uses a real-space first-quantised representation of the molecular Hamiltonian which we propagate using high-order product formulae. Essential for this low complexity is the use of a technique similar to the fast multipole method for computing the Coulomb operator with $\widetilde{\cal O}(\eta)$ complexity for a simulation with $\eta$ particles. We show how to modify this algorithm so that it can be implemented on a quantum computer. We ultimately demonstrate an approach with $t(\eta^{4/3}N^{1/3} + \eta^{1/3} N^{2/3} ) (\eta Nt/\epsilon)^{o(1)}$ gate complexity, where $N$ is the number of grid points, $\epsilon$ is target precision, and $t$ is the duration of time evolution. This is roughly a speedup by ${\cal O}(\eta)$ over most prior algorithms. We provide lower complexity than all prior work for $N<\eta^6$ (the only regime of practical interest), with only first-quantised interaction-picture simulations providing better performance for $N>\eta^6$. However, we expect the algorithm to have large constant factors that are likely to limit its practical applicability. View details
    The Pseudo-Dimension of Contracts
    Paul Duetting
    Michal Feldman
    Tomasz Ponitka
    Ermis Soumalis
    EC '25: Proceedings of the 26th ACM Conference on Economics and Computation (2025), 514 - 539
    Preview abstract Algorithmic contract design studies scenarios where a principal incentivizes an agent to exert effort on her behalf. In this work, we focus on settings where the agent's type is drawn from an unknown distribution, and formalize an offline learning framework for learning near-optimal contracts from sample agent types. A central tool in our analysis is the notion of pseudo-dimension from statistical learning theory. Beyond its role in establishing upper bounds on the sample complexity, pseudo-dimension measures the intrinsic complexity of a class of contracts, offering a new perspective on the tradeoffs between simplicity and optimality in contract design. Our main results provide essentially optimal tradeoffs between pseudo-dimension and representation error (defined as the loss in principal's utility) with respect to linear and bounded contracts. Using these tradeoffs, we derive sample- and time-efficient learning algorithms, and demonstrate their near-optimality by providing almost matching lower bounds on the sample complexity. Conversely, for unbounded contracts, we prove an impossibility result showing that no learning algorithm exists. Finally, we extend our techniques in three important ways. First, we provide refined pseudo-dimension and sample complexity guarantees for the combinatorial actions model, revealing a novel connection between the number of critical values and sample complexity. Second, we extend our results to menus of contracts, showing that their pseudo-dimension scales linearly with the menu size. Third, we adapt our algorithms to the online learning setting, where we show that, a polynomial number of type samples suffice to learn near-optimal bounded contracts. Combined with prior work, this establishes a formal separation between expert advice and bandit feedback for this setting. View details
    Preview abstract Artificial intelligence is rapidly transforming software development. But simply adopting AI tools isn’t a guarantee of success. Across the industry, tech leaders and developers are asking the same critical questions: How do we move from just using AI to truly succeeding with it? How do we ensure our investment in AI delivers better, faster, and more reliable software? The DORA research team has developed the inaugural DORA AI Capabilities Model to provide data-backed guidance for organizations grappling with these questions. This is not just another report on AI adoption trends; it is a guide to the specific technical and cultural practices that amplify the benefits of AI. View details
    Preview abstract We consider the question of learnability of distribution classes in the presence of adaptive adversaries – that is, adversaries capable of inspecting the whole sample requested by a learner and applying their manipulations before passing it on to the learner. We formulate a general notion of learnability with respect to adaptive adversaries, taking into account the budget of the adversary. We show that learnability with respect to additive adaptive adversaries is a strictly stronger condition than learnability with respect to additive oblivious adversaries. View details
    Deletion Robust Non-Monotone Submodular Maximization over Matroids
    Paul Duetting
    Federico Fusco
    Ashkan Norouzi Fard
    Journal of Machine Learning Research, 26 (2025), pp. 1-28
    Preview abstract Maximizing a submodular function is a fundamental task in machine learning and in this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(4.597+O(\eps))$-approximation algorithm with summary size $O( \frac{k+d}{\eps^2}\log \frac{k}{\eps})$ that is improved to a $(3.582+O(\eps))$-approximation with $O(k + \frac{d}{\eps^2}\log \frac{k}{\eps})$ summary size when the objective is monotone. In the streaming setting we provide a $(9.435 + O(\eps))$-approximation algorithm with summary size and memory $O(k + \frac{d}{\eps^2}\log \frac{k}{\eps})$; the approximation factor is then improved to $(5.582+O(\eps))$ in the monotone case. View details
    Empirical Privacy Variance
    Ruicheng Xian
    Chiyuan Zhang
    Fan Wu
    Yuzheng Hu
    Pritish Kamath
    David Forsyth
    Yuhang Liu
    Lydia Zakynthinou
    International Conference on Machine Learning (ICML) (2025)
    Preview abstract We propose the notion of empirical privacy variance and study it in the context of differentially private fine-tuning of language models. Specifically, we show that models calibrated to the same (ε,δ)-DP guarantee using DP-SGD with different hyperparameter configurations can exhibit significant variations in empirical privacy, which we quantify through the lens of memorization. We investigate the generality of this phenomenon across multiple dimensions and discuss why it is surprising and relevant. Through regression analysis, we examine how individual and composite hyperparameters influence empirical privacy. The results reveal a no-free-lunch trade-off: existing practices of hyperparameter tuning in DP-SGD, which focus on optimizing utility under a fixed privacy budget, often come at the expense of empirical privacy. To address this, we propose refined heuristics for hyperparameter selection that explicitly account for empirical privacy, showing that they are both precise and practically useful. Finally, we take preliminary steps to understand empirical privacy variance. We propose two hypotheses, identify limitations in existing techniques like privacy auditing, and outline open questions for future research. View details
    Ethical Co-Development of AI Applications with Indigenous Communities
    Claudio Pinhanez
    Edem Wornyo
    (2025) (to appear)
    Preview abstract This course explores how researchers and practitioners can engage ethically with Indigenous communities when developing AI- and data-intensive applications. Some key issues such as fair engagement, legal constraints, reciprocity, and informed consent are discussed based on the examples drawn from the instructors’ experience. The course also examines good practices in terms of co-designing and co-development processes, data governance and sovereignty issues and systems, decolonial software licensing, and processes of technology transfer and appropriation. In its practical part, the course critically discusses examples and cases gathered from the audience to explore the diversity of issues and solutions when working with Indigenous communities. View details
    PROTECT: A Framework to Foster Digital Resilience for Youth Navigating Technology-Facilitated Abuse
    Diana Freed
    Natalie Bazarova
    Dan Cosley
    Patrick Gage Kelley
    Social Sciences Journal, 14(6) (2025)
    Preview abstract Youth are increasingly exposed to a broad range of technology-facilitated abuse that challenges their safety and well-being. Building on previous work that examined youth help-seeking behaviors, coping strategies, threats they encounter, and the social support systems around them, we articulate a framework— called PROTECT—Problem recognition, Reaching out, Organizing support, Training, Engaging experts, Continuous support, and Tackling safety measures—which integrates existing models of support, help-seeking, and digital skills to offer a high-level, structured approach to adults who serve as a support system to youth navigate technology-facilitated abuse. The framework unpacks social and contextual dynamics that influence help-seeking behaviors, providing a foundation for educators, advocates, health professionals, developers and other adult stakeholders to design and develop trauma-informed, timely interventions to promote resilience. View details
    Nearly Tight Regret Bounds for Revenue Maximization in Bilateral Trade
    Simone di Gregorio
    Paul Duetting
    Federico Fusco
    Chris Schwiegelshohn
    FOCS 2025
    Preview abstract Bilateral trade models the task of intermediating between two strategic agents, a seller and a buyer, willing to trade a good for which they hold private valuations. We study this problem from the perspective of a broker, in a regret minimization framework. At each time step, a new seller and buyer arrive, and the broker has to propose a mechanism that is incentive-compatible and individually rational, with the goal of maximizing profit. We propose a learning algorithm that guarantees a nearly tight regret in the stochastic setting when seller and buyer valuations are drawn i.i.d. from a fixed and possibly correlated unknown distribution. We further show that it is impossible to achieve sublinear regret in the non-stationary scenario where valuations are generated upfront by an adversary. Our ambitious benchmark for these results is the best incentive-compatible and individually rational mechanism. This separates us from previous works on efficiency maximization in bilateral trade, where the benchmark is a single number: the best fixed price in hindsight. A particular challenge we face is that uniform convergence for all mechanisms' profits is impossible. We overcome this difficulty via a careful chaining analysis that proves convergence for a provably near-optimal mechanism at (essentially) optimal rate. We further showcase the broader applicability of our techniques by providing nearly optimal results for the joint ads problem. View details
    Quantum algorithm for linear matrix equations
    Rolando Somma
    Guang Hao Low
    Dominic Berry
    arXiv (2025)
    Preview abstract We describe an efficient quantum algorithm for solving the linear matrix equation AX+XB=C, where A, B, and C are given complex matrices and X is unknown. This is known as the Sylvester equation, a fundamental equation with applications in control theory and physics. Our approach constructs the solution matrix X/x in a block-encoding, where x is a rescaling factor needed for normalization. This allows us to obtain certain properties of the entries of X exponentially faster than would be possible from preparing X as a quantum state. The query and gate complexities of the quantum circuit that implements this block-encoding are almost linear in a condition number that depends on A and B, and depend logarithmically in the dimension and inverse error. We show how our quantum circuits can solve BQP-complete problems efficiently, discuss potential applications and extensions of our approach, its connection to Riccati equation, and comment on open problems. View details
    Pragmatic Fairness: Evaluating ML Fairness Within the Constraints of Industry
    Jessie Smith
    Michael Madaio
    Robin Burke
    Casey Fiesler
    2025
    Preview abstract Machine learning (ML) fairness evaluation in real-world, industry settings presents unique challenges due to business-driven constraints that influence decision-making processes. While prior research has proposed fairness frameworks and evaluation methodologies, these approaches often focus on idealized conditions and may lack consideration for the practical realities faced by industry practitioners. To understand these practical realities, we conducted a semi-structured interview study with 21 experts from academia and industry specializing in ML fairness. Through this study, we explore three constraints of ML fairness evaluation in industry— balancing competing interests, lacking power/access, and getting buy-in—and how these constraints lead to satisficing, seeking satisfactory rather than ideal outcomes. We define the path from these constraints to satisficing as pragmatic fairness. Using recommender systems as a case study, we explore how practitioners navigate these constraints and highlight actionable strategies to improve fairness evaluations within these business-minded boundaries. This paper provides practical insights to guide fairness evaluations in industry while also showcasing how the FAccT community can better align research goals with the operational realities of practitioners. View details
    ×