Jump to Content

Vidushi Dadu

I am a Systems Research Engineer in Google SRG. My research interests are in computer architecture, hardware accelerator design, with the focus on programmable abstractions for multiple data processing domains . Prior to this, I received my PhD from UCLA, advised by Prof. Tony Nowatzki. During my PhD, I developed spatial architecture mechanisms for domains in machine learning, graph processing, databases and signal processing. During my internships, I worked on Intel's Configurable Spatial Architecture and SQL accelerators for Microsoft Azure. I did my Bachelors in Electronics and Communication Engineering from IIT Roorkee, India. Here is a link to my personal website: http://web.cs.ucla.edu/~vidushi.dadu/
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Profiling Hyperscale Big Data Processing
    Aasheesh Kolli
    Abraham Gonzalez
    Samira Khan
    Sihang Liu
    Krste Asanovic
    ISCA (2023)
    Preview abstract Computing demand continues to grow exponentially, largely driven by "big data" processing on hyperscale data stores. At the same time, the slowdown in Moore's law is leading the industry to embrace custom computing in large-scale systems. Taken together, these trends motivate the need to characterize live production traffic on these large data processing platforms and understand the opportunity of acceleration at scale. This paper addresses this key need. We characterize three important production distributed database and data analytics platforms at Google to identify key hardware acceleration opportunities and perform a comprehensive limits study to understand the trade-offs among various hardware acceleration strategies. We observe that hyperscale data processing platforms spend significant time on distributed storage and other remote work across distributed workers. Therefore, optimizing storage and remote work in addition to compute acceleration is critical for these platforms. We present a detailed breakdown of the compute-intensive functions in these platforms and identify dominant key data operations related to datacenter and systems taxes. We observe that no single accelerator can provide a significant benefit but collectively, a sea of accelerators, can accelerate many of these smaller platform-specific functions. We demonstrate the potential gains of the sea of accelerators proposal in a limits study and analytical model. We perform a comprehensive study to understand the trade-offs between accelerator location (on-chip/off-chip) and invocation model (synchronous/asynchronous). We propose and evaluate a chained accelerator execution model where identified compute-intensive functions are accelerated and pipelined to avoid invocation from the core, achieving a 3x improvement over the baseline system while nearly matching identical performance to an ideal fully asynchronous execution model. View details
    No Results Found