Lesly Miculicich
I'm a Senior Research Engineer at Google Cloud AI Research team. My recent work focuses on LLM's reasoning capabilities and structured data understanding. Previously, I was Researcher at Microsoft, and I received my PhD degree from EPFL in Switzerland. My research interest is on general natural language understanding, and machine learning.
Research Areas
Authored Publications
Sort By
Deep Researcher with Test-time Diffusion
Guan Sun
Zoey CuiZhu
Yuanjun (Sophia) Bi
Weiming Wen
Hui Wan
Chunfeng Wen
Solène Maître
George Lee
Vishy Tirumalashetty
Emily Xue
Burak Gokturk
2025
Preview abstract
Deep research agents, powered by Large Language Models (LLMs), are rapidly advancing; yet, their performance often plateaus when generating complex, long-form research reports using generic test-time scaling algorithms. Drawing inspiration from the iterative nature of human research, which involves cycles of searching, reasoning, and revision, we propose the Test-Time Diffusion Deep Researcher (TTD-DR). This novel framework conceptualizes research report generation as a diffusion process. TTD-DR initiates this process with a preliminary draft, an updatable skeleton that serves as an evolving foundation to guide the research direction. The draft is then iteratively refined through a "denoising" process, which is dynamically informed by a retrieval mechanism that incorporates external information at each step. The core process is further enhanced by a self-evolutionary algorithm applied to each component of the agentic workflow, ensuring the generation of high-quality context for the diffusion process. This draft-centric design guides the report writing process to be more timely and coherent while reducing information loss during the iterative search process. We demonstrate that our TTD-DR achieves state-of-the-art results on a wide array of benchmarks that require intensive search and multi-hop reasoning, significantly outperforming existing deep research agents.
View details
Preview abstract
Artificial intelligence is rapidly evolving, marked by the emergence of Large Language Model (LLM) agents – systems capable of complex reasoning, planning, and interaction with digital and physical environments. These agents, powered by advancements in LLMs, demonstrate remarkable capabilities across diverse domains, including finance, healthcare, web navigation, software development, and daily task assistance. Unlike traditional AI systems, LLM agents can perceive their surroundings, formulate multi-step plans, utilize external tools and APIs, access memory or knowledge bases, and execute actions to achieve specified goals. This ability to act upon the world, however, introduces significant safety and security challenges.
The safety paradigms developed for traditional LLMs, primarily focused on mitigating harmful textual outputs (e.g., toxicity, bias), are insufficient for safeguarding LLM agents. Agents interacting with dynamic environments and executing actions present a broader attack surface and new categories of risk. These include performing unsafe operations, violating privacy constraints through improper data handling or access control failures, deviating from user objectives (task misalignment), and susceptibility to novel manipulation techniques like indirect prompt injection and memory poisoning. Ensuring the trustworthy operation of these powerful agents is paramount, especially as they are integrated into high-stakes applications. To address this critical challenge, we introduce VeriGuard, a novel framework designed to enhance the safety and reliability of LLM agents by interactively verifying their policies and the actions. VeriGuard integrates a verification module that intercepts code-based actions proposed by the agent. In the first step, VeriGuard will generates and verifies the policies. The policies are rigorously checked against a set of predefined safety and security specifications Then each action will be verified to make sure it will align with the agent specification. This interactive verification loop ensures that the agent's behavior remains within safe operational bounds, effectively preventing the execution of harmful or unintended operations. By verifying each step, VeriGuard provides a robust safeguard, substantially improving the trustworthiness of LLM agents in complex, real-world environments.
View details
SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL
Satya Gundabathula
Hanjun Dai
Hootan Nakhost
TMLR (2024)
Preview abstract
Text-to-SQL, the process of translating natural language into Structured Query Language
(SQL), represents a transformative application of large language models (LLMs), potentially
revolutionizing how humans interact with data. This paper introduces the SQL-PaLM
framework, a comprehensive solution for understanding and enhancing Text-to-SQL using
LLMs, using in the learning regimes of few-shot prompting and instruction fine-tuning. With
few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error filtering. With instruction fine-tuning, we delve deep in understanding the critical
paradigms that influence the performance of tuned LLMs. In particular, we investigate
how performance can be improved through expanded training data coverage and diversity,
synthetic data augmentation, and integrating query-specific database content. We propose
a test-time selection method to further refine accuracy by integrating SQL outputs from
multiple paradigms with execution feedback as guidance. Additionally, we tackle the
practical challenge of navigating intricate databases with a significant number of tables and
columns, proposing efficient techniques for accurately selecting relevant database elements to
enhance Text-to-SQL performance. Our holistic approach yields substantial advancements
in Text-to-SQL, as demonstrated on two key public benchmarks, Spider and BIRD. Through
comprehensive ablations and error analyses, we shed light on the strengths and weaknesses
of our framework, offering valuable insights into Text-to-SQL’s future work.
View details
Chain-of-Table: Evolves Tables in the LLM Reasoning Chain for Table Understanding
Zilong Wang
Hao Zhang
Chun-Liang Li
Jingbo Shang
ICLR (2024)
Preview abstract
Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM choices.
View details
Preview abstract
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs' output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.
View details
Transformers as Graph-to-Graph Models
James Henderson
Alireza Mohammadshahi
Andrei C. Coman
The Big Picture Workshop, ACL,
(2023)
Preview abstract
We argue that Transformers are essentially graph-to-graph models, with sequences just being a special case. Attention weights are functionally equivalent to graph edges. Our Graph-to-Graph Transformer architecture makes this ability explicit, by inputting graph edges into the attention weight computations and predicting graph edges with attention-like functions, thereby integrating explicit graphs into the latent graphs learned by pretrained Transformers. Adding iterative graph refinement provides a joint embedding of input, output, and latent graphs, allowing non-autoregressive graph prediction to optimise the complete graph without any bespoke pipeline or decoding strategy.
Empirical results show that this architecture achieves state-of-the-art accuracies for modelling a variety of linguistic structures, integrating very effectively with the latent linguistic representations learned by pretraining.
View details