Jiefeng Chen

Jiefeng Chen

Jiefeng Chen is a Research Scientist at Google Cloud AI Research, working to build more robust and reliable Large Language Models (LLMs) for real-world applications. For complete list of publications and latest updates, please check out his primary homepage or visit his Google Scholar page.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain. These predictions can then be deferred to humans for further evaluation. As an everlasting challenge for machine learning, in many real-world scenarios, the distribution of test data is different from the training data. This results in more inaccurate predictions, and often increased dependence on humans, which can be difficult and expensive. Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples. Selective prediction and active learning have been approached from different angles, with the connection between them missing. In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain while increasing accuracy and coverage. For this new paradigm, we propose a simple yet effective approach, ASPEST, that utilizes ensembles of model snapshots with self-training with their aggregated outputs as pseudo labels. Extensive experiments on numerous image, text and structured datasets, which suffer from domain shifts, demonstrate that ASPEST can significantly outperform prior work on selective prediction and active learning (e.g. on the MNIST→SVHN benchmark with the labeling budget of 100, ASPEST improves the AUACC metric from 79.36% to 88.84%) and achieves more optimal utilization of humans in the loop. View details
    Is Forgetting Less a Good Inductive Bias for Forward Transfer?
    Timothy Nguyen
    Dilan Gorur
    Arslan Chaudhry
    International Conference on Learning Representations (ICLR) (2023)
    Preview abstract One of the main motivations of studying continual learning is that the problem setting allows a model to accrue knowledge from past tasks to learn new tasks more efficiently. However, recent studies suggest that the key metric that continual learning algorithms optimize, reduction in catastrophic forgetting, does not correlate well with the forward transfer of knowledge. We believe that the conclusion previous works reached is due to the way they measure forward transfer. We argue that the measure of forward transfer to a task should not be affected by the restrictions placed on the continual learner in order to preserve knowledge of previous tasks. Instead, forward transfer should be measured by how easy it is to learn a new task given a set of representations produced by continual learning on previous tasks. Under this notion of forward transfer, we evaluate different continual learning algorithms on a variety of image classification benchmarks. Our results indicate that less forgetful representations lead to a better forward transfer suggesting a strong correlation between retaining past information and learning efficiency on new tasks. Further, we found less forgetful representations to be more diverse and discriminative compared to their forgetful counterparts. View details
    Preview abstract Large language models (LLMs) have recently shown great advances in a variety of tasks, including natural language understanding and generation. However, their use in high-stakes decision-making scenarios is still limited due to the potential for errors. Selective prediction is a technique that can be used to improve the reliability of the LLMs by allowing them to abstain from making predictions when they are unsure of the answer. In this work, we propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of LLMs. Our framework is based on the idea of using parameter-efficient tuning to adapt the LLM to the specific task at hand while improving its ability to perform self-evaluation. We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods. For example, on the CoQA benchmark, our method improves the AUACC from 91.23% to 92.63% and improves the AUROC from 74.61% to 80.25%. View details
    Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles
    Frederick Liu
    Besim Namik Avci
    Yingyu Liang
    Somesh Jha
    Neural Information Processing Systems (NeurIPS) (2021)
    Preview abstract When a deep learning model is deployed in the wild, it can encounter test data drawn from distributions different from the training data distribution and suffer drop in performance. For safe deployment, it is essential to estimate the accuracy of the pre-trained model on the test data. However, the labels for the test inputs are usually not immediately available in practice, and obtaining them can be expensive. This observation leads to two challenging tasks: (1) unsupervised accuracy estimation, which aims to estimate the accuracy of a pre-trained classifier on a set of unlabeled test inputs; (2) error detection, which aims to identify mis-classified test inputs. In this paper, we propose a principled and practically effective framework that simultaneously addresses the two tasks. The proposed framework iteratively learns an ensemble of models to identify mis-classified data points and performs self-training to improve the ensemble with the identified points. Theoretical analysis demonstrates that our framework enjoys provable guarantees for both accuracy estimation and error detection under mild conditions readily satisfied by practical deep learning models. Along with the framework, we proposed and experimented with two instantiations and achieved state-of-the-art results on 59 tasks. For example, on iWildCam, one instantiation reduces the estimation error for unsupervised accuracy estimation by at least 70% and improves the F1 score for error detection by at least 4.7% compared to existing methods. View details