J. Chase Kew

J. Chase Kew

Chase works on machine learning and robotics at Google Brain.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Joint attention — the ability to purposefully coordinate your attention with another person, and mutually attend to the same thing — is an important milestone in human cognitive development. In this paper, we ask whether joint attention can be useful as a mechanism for improving multi-agent coordination and social learning. We first develop deep reinforcement learning (RL) agents with a recurrent visual attention architecture. We then train agents to minimize the difference between the attention weights that they apply to the environment at each timestep, and the attention of other agents. Our results show that this joint attention incentive improves agents’ ability to solve difficult coordination tasks, by helping overcome the problem of exploring the combinatorial multi-agent action space. Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments. Further, we show that joint attention enhances agents’ ability to learn from experts present in their environment, even when performing single-agent tasks. Taken together, these findings suggest that joint attention may be a useful inductive bias for improving multi-agent learning. View details
    Long-Range Indoor Navigation with PRM-RL
    Anthony Francis
    Marek Fiser
    Tsang-Wei Lee
    IEEE Transactions on Robotics (T-RO) (2020), pp. 19
    Preview abstract Long-range indoor navigation requires guiding robots with noisy sensors and controls through cluttered environments along paths that span a variety of buildings. We achieve this with PRM-RL, a hierarchical robot navigation method in which reinforcement learning agents that map noisy sensors to robot controls learn to solve short-range obstacle avoidance tasks, and then sampling-based planners map where these agents can reliably navigate in simulation; these roadmaps and agents are then deployed on robots, guiding them along the shortest path where the agents are likely to succeed. Here we use Probabilistic Roadmaps (PRMs) as the sampling-based planner, and AutoRL as the reinforcement learning method in the indoor navigation context. We evaluate the method in simulation for kinematic differential drive and kinodynamic car-like robots in several environments, and on differential-drive robots at three physical sites. Our results show PRM-RL with AutoRL is more successful than several baselines, is robust to noise, and can guide robots over hundreds of meters in the face of noise and obstacles in both simulation and on robots, including over 5.8 kilometers of physical robot navigation. View details
    Model-based Reinforcement Learning for Decentralized Multiagent Rendezvous
    Rose E. Wang
    Dennis Lee
    Edward Lee
    Brian Andrew Ichter
    Conference on Robot Learning (CoRL) (2020)
    Preview abstract Collaboration requires agents to align their goals on the fly. Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans. We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous. Starting with pretrained, single-agent point to point navigation policies and using noisy, high-dimensional sensor inputs like lidar, we first learn via self-supervision motion predictions of all agents on the team. Next, HPP uses the prediction models to propose and evaluate navigation subgoals for completing the rendezvous task without explicit communication among agents. We evaluate HPP in a suite of unseen environments, with increasing complexity and numbers of obstacles. We show that HPP outperforms alternative reinforcement learning, path planning, and heuristic-based baselines on challenging, unseen environments. Experiments in the real world demonstrate successful transfer of the prediction models from sim to real world without any additional fine-tuning. Altogether, HPP removes the need for a centralized operator in multiagent systems by combining model-based RL and inference methods, enabling agents to dynamically align plans. View details
    Neural Collision Clearance Estimator for Batched Motion Planning
    Brian Andrew Ichter
    Maryam Bandari
    Edward Lee
    The 14th International Workshop on the Algorithmic Foundations of Robotics (WAFR) (2020)
    Preview abstract We present a neural network collision checking heuristic, ClearanceNet, and a planning algorithm, CN-RRT. ClearanceNet learns to predict separation distance (minimum distance between robot and workspace) with respect to a workspace. CN-RRT then efficiently computes a motion plan by leveraging three key features of ClearanceNet. First, CN-RRT explores the space by expanding multiple nodes at the same time, processing batches of thousands of collision checks. Second, CN-RRT adaptively relaxes its clearance requirements for more difficult problems. Third, to repair errors, CN-RRT shifts its nodes in the direction of ClearanceNet’s gradient and repairs any residual errors with a traditional RRT, thus maintaining theoretical probabilistic completeness guarantees. In configuration spaces with up to 30 degrees of freedom, ClearanceNet achieves 845x speedup over traditional collision detection methods, while CN-RRT accelerates motion planning by up to 42% over a baseline and finds paths up to 36% more efficient. Experiments on an 11 degree of freedom robot in a cluttered environment confirm the method’s feasibility on real robots. View details
    FollowNet: Robot Navigation by Following Natural Language Directions with Deep Reinforcement Learning
    Pararth Shah
    Marek Fiser
    Dilek Hakkani-Tur
    Third Machine Learning in Planning and Control of Robot Motion Workshop at ICRA (2018)
    Preview abstract Abstract— Understanding and following directions provided by humans can enable robots to navigate effectively in unknown situations. We present FollowNet, an end-to-end differentiable neural architecture for learning multi-modal navigation poli- cies. FollowNet maps natural language instructions as well as visual and depth inputs to locomotion primitives. Fol- lowNet processes instructions using an attention mechanism conditioned on its visual and depth input to focus on the relevant parts of the command while performing the navigation task. Deep reinforcement learning (RL) a sparse reward learns simultaneously the state representation, the attention function, and control policies. We evaluate our agent on a dataset of complex natural language directions that guide the agent through a rich and realistic dataset of simulated homes. We show that the FollowNet agent learns to execute previously unseen instructions described with a similar vocabulary, and successfully navigates along paths not encountered during training. The agent shows 30% improvement over a baseline model without the attention mechanism, with 52% success rate at novel instructions. View details