
Helena Caminal
Helena Caminal is a researcher at the SystemsResearch@Google (SRG) team. She received her Ph.D. in Electrical and Computer Engineering at Cornell University, where worked on co-designing Associative Processors from the 1970s for database analytics. Her interests include accelerating vector search, database systems, and hardware/software co-design for data-intensive applications.
Research Areas
Authored Publications
Sort By
Databases in the Era of Memory-Centric Computing
Yannis Chronis
Anastasia Ailamaki
Lawrence Benson
Jana Gičeva
Eric Seldar
Lisa Wu Wills
2025
Preview abstract
The increasing disparity between processor core counts and memory bandwidth, coupled with the rising cost and underutilization of memory, introduces a performance and cost Memory Wall and presents a significant challenge to the scalability of database systems. We argue that current processor-centric designs are unsustainable, and we advocate for a shift towards memory-centric computing, where disaggregated memory pools enable cost-effective scaling and robust performance. Database systems are uniquely positioned to leverage memory-centric systems because of their intrinsic data-centric nature. We demonstrate how memory-centric database operations can be realized with current hardware, paving the way for more efficient and scalable data management in the cloud.
View details
Preview abstract
The integration of vector search into databases, driven by advancements in embedding models, semantic search, and Retrieval-Augmented Generation (RAG), enables powerful combined querying of structured and unstructured data. This paper focuses on filtered vector search (FVS), a core operation where relational predicates restrict the dataset before or during the vector similarity search (top-k). While approximate near neighbor (ANN) indices are commonly used to accelerate vector search by trading latency for recall, the addition of filters complicates performance optimization and makes achieving stable, declarative recall guarantees challenging. Filters alter the effective dataset size and distribution, impacting the search effort required. We discuss the primary FVS execution strategies – pre-filtering, post-filtering, and inline-filtering – whose efficiencies depend on factors like filter selectivity, cardinality, and data correlation. We review existing approaches that modify index structures and search algorithms (e.g., iterative post-filtering, filter-aware index traversal) to enhance FVS performance. This tutorial provides a comprehensive overview of filtered vector search, discussing its use cases, classifying current solutions and their trade-offs, and highlighting crucial research challenges and future directions for developing efficient and accurate FVS systems.
View details