Golnaz Ghiasi
Research Areas
Authored Publications
Sort By
SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization
Xianzhi Du
Tsung-Yi Lin
Yin Cui
Xiaodan Song
CVPR (2020)
Preview abstract
Convolutional neural networks typically encode an input image into a series of intermediate features with decreasing resolutions. While this structure is suited to classification tasks, it does not perform well for tasks requiring simultaneous recognition and localization (e.g., object detection). The encoder-decoder architectures are proposed to resolve this by applying a decoder network onto a backbone model designed for classification tasks. In this paper, we argue encoder-decoder architecture is ineffective in generating strong multi-scale features because of the scale-decreased backbone. We propose SpineNet, a backbone with scale-permuted intermediate features and cross-scale connections that is learned on an object detection task by Neural Architecture Search. Using similar building blocks, SpineNet models outperform ResNet-FPN models by ~3% AP at various scales while using 10-20% fewer FLOPs. In particular, SpineNet-190 achieves 52.5% AP with a MaskR-CNN detector and achieves 52.1% AP with a RetinaNet detector on COCO for a single model without test-time augmentation, significantly outperforms prior art of detectors. SpineNet can transfer to classification tasks, achieving 5% top-1 accuracy improvement on a challenging iNaturalist fine-grained dataset. Code is at: https://github.com/tensorflow/tpu/tree/master/models/official/detection.
View details
Preview abstract
Deep neural networks often work well when they are over-parameterized and trained with a massive amount of noise and regularization, such as weight decay and dropout. Although dropout is widely used as a regularization technique for fully connected layers, it is often less effective for convolutional layers. This lack of success of dropout for convolutional layers is perhaps due to the fact that activation units in convolutional layers are spatially correlated so information can still flow through convolutional networks despite dropout. Thus a structured form of dropout is needed to regularize convolutional networks. In this paper, we introduce DropBlock, a form of structured dropout, where units in a contiguous region of a feature map are dropped together. We found that applying DropbBlock in skip connections in addition to the convolution layers increases the accuracy. Also, gradually increasing number of dropped units during training leads to better accuracy and more robust to hyperparameter choices. Extensive experiments show that DropBlock works better than dropout in regularizing convolutional networks. On ImageNet classification, ResNet-50 architecture with DropBlock achieves 78.13% accuracy, which is more than 1.6% improvement on the baseline. On COCO detection, DropBlock improves Average Precision of RetinaNet from 36.8% to 38.4%.
View details
Exploring the structure of a real-time, arbitrary neural artistic stylization network
Honglak Lee
Manjunath Kudlur
Jonathon Shlens
Proceedings of the 28th British Machine Vision Conference (BMVC) (2017)
Preview abstract
In this paper, we present a method which combines the flexibility of the neural algorithm of artistic style with the speed of fast style transfer networks to allow real-time stylization using any content/style image pair. We build upon recent work leveraging conditional instance normalization for multi-style transfer networks by learning to predict the conditional instance normalization parameters directly from a style image. The model is successfully trained on a corpus of roughly 80,000 paintings and is able to generalize to paintings previously unobserved. We demonstrate that the learned embedding space is smooth and contains a rich structure and organizes semantic information associated with paintings in an entirely unsupervised manner.
View details