Arjun Gopalan

Arjun Gopalan

I am a software engineer at Google Research. My areas of interest include graph-based machine learning, label propagation, and data mining. I currently work on Google's large scale semi-supervised machine learning platform and on Neural Structured Learning in TensorFlow.

Prior to Google, I worked on developing enterprise storage technologies at Tintri for close to 4 years. While at Tintri, I was one of the principal contributors to the design and implementation of logical synchronous replication with automatic transparent failover. A paper on Logical Synchronous Replication appeared in FAST’18.

I completed my Masters in Computer Science with a distinction in research at Stanford University in 2014. At Stanford, I was part of the Platform Lab working with Dr. John Ousterhout on RAMCloud, a low latency DRAM-based distributed data center storage system. A paper on RAMCloud appeared in TOCS’15. My Master’s thesis was on managing objects and secondary indexes in RAMCloud, which was part of a larger effort to design and implement scalable low-latency secondary indices (SLIK) in RAMCloud. A paper on SLIK appeared in ATC'16.

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Google
Recognizing Multimodal Entailment (tutorial at ACL 2021)
Afsaneh Hajiamin Shirazi
Blaž Bratanič
Christina Liu
Gabriel Fedrigo Barcik
Georg Fritz Osang
Jared Frank
Lucas Smaira
Ricardo Abasolo Marino
Roma Patel
Vaiva Imbrasaite
(2021) (to appear)