Alexander Lloyd
Research Areas
Authored Publications
Sort By
Spanner: Becoming a SQL System
Nathan Bales
Nico Bruno
Brian F. Cooper
Adam Dickinson
Andrew Fikes
Campbell Fraser
Andrey Gubarev
Milind Joshi
Eugene Kogan
Sergey Melnik
Rajesh Rao
Dave Shue
Chris Taylor
Marcel van der Holst
Dale Woodford
Proc. SIGMOD 2017, pp. 331-343 (to appear)
Preview abstract
Spanner is a globally-distributed data management system that backs hundreds of mission-critical services at Google. Spanner is built on ideas from both the systems and database communities. The first Spanner paper published at OSDI'12 focused on the systems aspects such as scalability, automatic sharding, fault tolerance, consistent replication, external consistency, and wide-area distribution. This paper highlights the database DNA of Spanner. We describe distributed query execution in the presence of resharding, query restarts upon transient failures, range extraction that drives query routing and index seeks, and the improved blockwise-columnar storage format. We touch upon migrating Spanner to the common SQL dialect shared with other systems at Google.
View details
Spanner: Google's Globally Distributed Database
Preview
Michael Epstein
Andrew Fikes
Christopher Frost
J. J. Furman
Andrey Gubarev
Christopher Heiser
Sebastian Kanthak
Eugene Kogan
Hongyi Li
Sergey Melnik
David Mwaura
David Nagle
Rajesh Rao
Lindsay Rolig
Yasushi Saito
Michal Szymaniak
Christopher Taylor
Ruth Wang
Dale Woodford
ACM Trans. Comput. Syst., 31 (2013), pp. 8
Spanner: Google's Globally-Distributed Database
Michael Epstein
Andrew Fikes
Christopher Frost
JJ Furman
Andrey Gubarev
Christopher Heiser
Peter Hochschild
Sebastian Kanthak
Eugene Kogan
Hongyi Li
Sergey Melnik
David Mwaura
David Nagle
Rajesh Rao
Lindsay Rolig
Dale Woodford
Yasushi Saito
Christopher Taylor
Michal Szymaniak
Ruth Wang
OSDI (2012)
Preview abstract
Spanner is Google's scalable, multi-version, globally-distributed, and synchronously-replicated database. It is the first system to distribute data at global scale and support externally-consistent distributed transactions. This paper describes how Spanner is structured, its feature set, the rationale underlying various design decisions, and a novel time API that exposes clock uncertainty. This API and its implementation are critical to supporting external consistency and a variety of powerful features: non-blocking reads in the past, lock-free read-only transactions, and atomic schema changes, across all of Spanner.
View details
Megastore: Providing Scalable, Highly Available Storage for Interactive Services
Jason Baker
JJ Furman
Andrey Khorlin
James Larson
Jean-Michel Leon
Yawei Li
Vadim Yushprakh
Proceedings of the Conference on Innovative Data system Research (CIDR) (2011), pp. 223-234
Preview abstract
Megastore is a storage system developed to meet the requirements of today's interactive online services. Megastore blends the scalability of a NoSQL datastore with the convenience of a traditional RDBMS in a novel way, and provides both strong consistency guarantees and high availability. We provide fully serializable ACID semantics within fine-grained partitions of data. This partitioning allows us to synchronously replicate each write across a wide area network with reasonable latency and support seamless failover between datacenters. This paper describes Megastore's semantics and replication algorithm. It also describes our experience supporting a wide range of Google production services built with Megastore.
View details