Aida Davani
Research Areas
Authored Publications
Sort By
Syntactic and Semantic Gender Biases in the Language on Children’s Television: Evidence from a Corpus of 98 Shows from 1960 to 2018
Andrea Vial
Ruyuan Zuo
Shreya Havaldar
Morteza Dehghani
Andrei Cimpian
Psychological Science (2025)
Preview abstract
Biased media content shapes children’s social concepts and identities. We examined gender bias in a large corpus of scripts from 98 children’s television programs spanning 1960 to 2018 (6,600 episodes, ~2.7 million sentences, ~16 million words). We focused on agency and communion, the fundamental psychological dimensions underlying gender stereotypes. At the syntactic level, words referring to men/boys (vs. women/girls) appear more often in the agent (vs. patient) role. This syntactic bias remained stable between 1960 and 2018. At the semantic level, words referring to men/boys (vs. women/girls) co-occurred more often with words denoting agency. Words denoting communion showed both stereotypical and counterstereotypical associations. Some semantic gender biases have remained unchanged or weakened over time; others have grown. These findings suggest gender stereotypes are built into the core of children’s stories. Whether we are closer to gender equality in children’s media depends on where one looks.
View details
Preview abstract
We study the effect of a firm's new information disclosure on the information asymmetry between its informed and uninformed investors and its liquidity. To do this, we employ advanced natural language processing (NLP) methods to introduce a novel measure of firms' 10-K filing predictability that quantifies the amount of new information in these reports. Our findings show that more new information is associated with higher bid-ask spreads and lower trading volumes, indicating increased information asymmetry and reduced liquidity, respectively. Notably, institutional ownership moderates these effects, suggesting that sophisticated investors can mitigate the adverse consequences of disclosure unpredictability. An event study analysis further reveals that more new information triggers increased trading activity and abnormal returns immediately after disclosure, though these effects are short-lived.
View details
Preview abstract
Detecting offensive content in text is an increasingly central challenge for both social-media platforms and AI-driven technologies. However offensiveness remains a subjective phenomenon as perspectives differ across sociodemographic characteristics, as well as cultural norms and moral values. This intricacy is largely ignored in the current AI-focused approaches for detecting offensiveness or related concepts such as hate speech and toxicity detection. We frame the task of determining offensiveness as essentially a matter of moral judgment --- deciding the boundaries of ethically wrong vs. right language to be used or generated within an implied set of sociocultural norms. In this paper, we investigate how judgment of offensiveness varies across diverse global cultural regions, and the crucial role of moral values in shaping these variations. Our findings highlight substantial cross-cultural differences in perceiving offensiveness, with moral concerns about Caring and Purity as the mediating factor driving these differences. These insights are of importance as AI safety protocols, shaped by human annotators' inputs and perspectives, embed their moral values which do not align with the notions of right and wrong in all contexts, and for all individuals.
View details
Preview abstract
Stereotypes are oversimplified beliefs and ideas about particular groups of people. These cognitive biases are omnipresent in our language, reflected in human-generated dataset and potentially learned and perpetuated by language technologies. Although mitigating stereotypes in language technologies is necessary for preventing harms, stereotypes can impose varying levels of risks for targeted individuals and social groups by appearing in various contexts. Technical challenges in detecting stereotypes are rooted in the societal nuances of stereotyping, making it impossible to capture all intertwined interactions of social groups in diverse cultural context in one generic benchmark. This paper delves into the nuances of detecting stereotypes in an annotation task with humans from various regions of the world. We iteratively disambiguate our definition of the task, refining it as detecting ``generalizing language'' and contribute a multilingual, annotated dataset consisting of sentences mentioning a wide range of social identities in 9 languages and labeled on whether they make broad statements and assumptions about those groups. We experiment with training generalizing language detection models, which provide insight about the linguistic context in which stereotypes can appear, facilitating future research in addressing the dynamic, social aspects of stereotypes.
View details
Preview abstract
Along with the recent advances in large language modeling, there is growing concern that language technologies may reflect, propagate, and amplify various social stereotypes about groups of people. Publicly available stereotype benchmarks play a crucial role in detecting and mitigating this issue in language technologies to prevent both representational and allocational harms in downstream applications. However, existing stereotype benchmarks are limited in their size and coverage, largely restricted to stereotypes prevalent in the Western society. This is especially problematic as language technologies are gaining hold across the globe. To address this gap, we present SeeGULL, a broad-coverage stereotype dataset, expanding the coverage by utilizing the generative capabilities of large language models such as PaLM and GPT-3, and leveraging a globally diverse rater pool to validate prevalence of those stereotypes in society. SeeGULL is an order of magnitude larger in terms of size, and contains stereotypes for 179 identity groups spanning 6 continents, 8 different regions, 178 countries, 50 US states, and 31 Indian states and union territories. We also get fine-grained offensiveness scores for different stereotypes and demonstrate how stereotype perceptions for the same identity group differs across in-region vs out-region annotators.
View details