Ke Jiang

I am a Research Engineer at Google Cloud.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract We propose a principled method to synthesize high-quality multi-turn function calling trajectories to align large language model (LLM)-based agents. We start with iteratively building function calling graph and defining node operations to increase its complexity. This enables us to construct reliable reference. Then, based on the synthesized function calling graph, we adopt back-and-forth translation to first construct multi-turn user queries and then, fill in the function arguments with information in the query. We sample positive trajectories that distill the function graph reference and negative trajectories that contrast with the positive trajectories in targeted loss patterns in multi-turn scenarios. Training with the positive trajectories with supervised fine-tuning and preference optimization against negative trajectories, we obtain 67.42 on BFCL and 71.7 on ToolQuery with an open-sourced model with 14B parameters, surpassing the performance of strong proprietary models like o1. View details
    Preview abstract Recent advances in long-context large language models (LLMs) have led to the emerging paradigm of many-shot in-context learning (ICL), where it is observed that scaling many more demonstrating examples beyond the conventional few-shot setup in the context can lead to performance benefits. However, despite its promise, it is unclear what aspects dominate the benefits and whether simply scaling to more examples is the most effective way of improving many-shot ICL. In this work, we first provide an analysis of the factors driving many-shot ICL, and we find that 1) many-shot performance can still be attributed to often a few disproportionately influential examples and 2) identifying such influential examples ("optimize") and using them as demonstrations to regenerate new examples ("generate") can lead to further improvements. Inspired by the findings, we propose BRIDGE, an algorithm that alternates between the optimize step with Bayesian optimization to discover the influential sets of examples and the generate step to reuse this set to expand the reasoning paths of the examples back to the many-shot regime automatically. On Gemini, Claude, and Mistral LLMs of different sizes, we show that BRIDGE to significant improvements across a diverse set of tasks, including symbolic reasoning, numerical reasoning, and code generation. View details
    ×