Leor Stern
Leor is a Product Management Director for AI at Google. His research portfolio includes new AI-powered user interfaces (such as text-to-audio), as well human-centric AI in health. Previously, Leor served as Head of Device Software at Fitbit. He co-lead the acquisition of Fitbit by Google and previously held leadership roles in Google's wearables and digital health group since it acquired his wearable software company, Cronologics Corporation, in 2016. Prior to founding Cronolgoics, Leor worked at a startup called IFTTT, and spent 10 years at Google building and launching new products, services, and operations, including launching Google's Israel office. Leor also helped found Niantic Labs, which later spun out and launched the hit game, Pokemon Go.
Authored Publications
Sort By
A personal health large language model for sleep and fitness coaching
Anastasiya Belyaeva
Zhun Yang
Nick Furlotte
Chace Lee
Erik Schenck
Yojan Patel
Jian Cui
Logan Schneider
Robby Bryant
Ryan Gomes
Allen Jiang
Roy Lee
Javier Perez
Jamie Rogers
Cathy Speed
Shyam Tailor
Megan Walker
Jeffrey Yu
Tim Althoff
Conor Heneghan
Mark Malhotra
Shwetak Patel
Shravya Shetty
Jiening Zhan
Daniel McDuff
Nature Medicine (2025)
Preview abstract
Although large language models (LLMs) show promise for clinical healthcare applications, their utility for personalized health monitoring using wearable device data remains underexplored. Here we introduce the Personal Health Large Language Model (PH-LLM), designed for applications in sleep and fitness. PH-LLM is a version of the Gemini LLM that was finetuned for text understanding and reasoning when applied to aggregated daily-resolution numerical sensor data. We created three benchmark datasets to assess multiple complementary aspects of sleep and fitness: expert domain knowledge, generation of personalized insights and recommendations and prediction of self-reported sleep quality from longitudinal data. PH-LLM achieved scores that exceeded a sample of human experts on multiple-choice examinations in sleep medicine (79% versus 76%) and fitness (88% versus 71%). In a comprehensive evaluation involving 857 real-world case studies, PH-LLM performed similarly to human experts for fitness-related tasks and improved over the base Gemini model in providing personalized sleep insights. Finally, PH-LLM effectively predicted self-reported sleep quality using a multimodal encoding of wearable sensor data, further demonstrating its ability to effectively contextualize wearable modalities. This work highlights the potential of LLMs to revolutionize personal health monitoring via tailored insights and predictions from wearable data and provides datasets, rubrics and benchmark performance to further accelerate personal health-related LLM research.
View details
Towards a Personal Health Large Language Model
Anastasiya Belyaeva
Nick Furlotte
Zhun Yang
Chace Lee
Erik Schenck
Yojan Patel
Jian Cui
Logan Schneider
Robby Bryant
Ryan Gomes
Allen Jiang
Roy Lee
Javier Perez
Jamie Rogers
Cathy Speed
Shyam Tailor
Megan Walker
Jeffrey Yu
Tim Althoff
Conor Heneghan
Mark Malhotra
Shwetak Patel
Shravya Shetty
Jiening Zhan
Yeswanth Subramanian
Daniel McDuff
arXiv (2024)
Preview abstract
Large language models (LLMs) can retrieve, reason over, and make inferences about a wide range of information. In health, most LLM efforts to date have focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into clinical tasks, provide a rich, continuous, and longitudinal source of data relevant for personal health monitoring. Here we present a new model, Personal Health Large Language Model (PH-LLM), a version of Gemini fine-tuned for text understanding and reasoning over numerical time-series personal health data for applications in sleep and fitness. To systematically evaluate PH-LLM, we created and curated three novel benchmark datasets that test 1) production of personalized insights and recommendations from measured sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep quality outcomes. For the insights and recommendations tasks we created 857 case studies in sleep and fitness. These case studies, designed in collaboration with domain experts, represent real-world scenarios and highlight the model’s capabilities in understanding and coaching. Through comprehensive human and automatic evaluation of domain-specific rubrics, we observed that both Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. To further assess expert domain knowledge, we evaluated PH-LLM performance on multiple choice question examinations in sleep medicine and fitness. PH-LLM achieved 79% on sleep (N=629 questions) and 88% on fitness (N=99 questions), both of which exceed average scores from a sample of human experts as well as benchmarks for receiving continuing credit in those domains. To enable PH-LLM to predict self-reported assessments of sleep quality, we trained the model to predict self-reported sleep disruption and sleep impairment outcomes from textual and multimodal encoding representations of wearable sensor data. We demonstrate that multimodal encoding is both necessary and sufficient to match performance of a suite of discriminative models to predict these outcomes. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge base and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM.
View details