Leor Stern

Leor Stern

Leor is a Product Management Director for AI at Google. His research portfolio includes new AI-powered user interfaces (such as text-to-audio), as well human-centric AI in health. Previously, Leor served as Head of Device Software at Fitbit. He co-lead the acquisition of Fitbit by Google and previously held leadership roles in Google's wearables and digital health group since it acquired his wearable software company, Cronologics Corporation, in 2016. Prior to founding Cronolgoics, Leor worked at a startup called IFTTT, and spent 10 years at Google building and launching new products, services, and operations, including launching Google's Israel office. Leor also helped found Niantic Labs, which later spun out and launched the hit game, Pokemon Go.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Towards a Personal Health Large Language Model
    Anastasiya Belyaeva
    Nick Furlotte
    Zhun Yang
    Chace Lee
    Erik Schenck
    Yojan Patel
    Jian Cui
    Logan Schneider
    Robby Bryant
    Ryan Gomes
    Allen Jiang
    Roy Lee
    Javier Perez
    Jamie Rogers
    Cathy Speed
    Shyam Tailor
    Megan Walker
    Jeffrey Yu
    Tim Althoff
    Conor Heneghan
    Mark Malhotra
    Shwetak Patel
    Shravya Shetty
    Jiening Zhan
    Yeswanth Subramanian
    Daniel McDuff
    arXiv (2024)
    Preview abstract Large language models (LLMs) can retrieve, reason over, and make inferences about a wide range of information. In health, most LLM efforts to date have focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into clinical tasks, provide a rich, continuous, and longitudinal source of data relevant for personal health monitoring. Here we present a new model, Personal Health Large Language Model (PH-LLM), a version of Gemini fine-tuned for text understanding and reasoning over numerical time-series personal health data for applications in sleep and fitness. To systematically evaluate PH-LLM, we created and curated three novel benchmark datasets that test 1) production of personalized insights and recommendations from measured sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep quality outcomes. For the insights and recommendations tasks we created 857 case studies in sleep and fitness. These case studies, designed in collaboration with domain experts, represent real-world scenarios and highlight the model’s capabilities in understanding and coaching. Through comprehensive human and automatic evaluation of domain-specific rubrics, we observed that both Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. To further assess expert domain knowledge, we evaluated PH-LLM performance on multiple choice question examinations in sleep medicine and fitness. PH-LLM achieved 79% on sleep (N=629 questions) and 88% on fitness (N=99 questions), both of which exceed average scores from a sample of human experts as well as benchmarks for receiving continuing credit in those domains. To enable PH-LLM to predict self-reported assessments of sleep quality, we trained the model to predict self-reported sleep disruption and sleep impairment outcomes from textual and multimodal encoding representations of wearable sensor data. We demonstrate that multimodal encoding is both necessary and sufficient to match performance of a suite of discriminative models to predict these outcomes. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge base and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM. View details