Wei Xia

Wei Xia

Wei Xia is a researcher and engineer at Google DeepMind, specializing in audio, LLMs, and multimodal R&D, with a record of recognized publications. His work has been featured in multiple Google products that benefit billions of users, such as YouTube, and has been covered by the Google AI Blog, TechCrunch, Wall Street Journal, and the Scientific American Podcast.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract In this paper, we introduce DiarizationLM, a framework to leverage large language models (LLM) to post-process the outputs from a speaker diarization system. Various goals can be achieved with the proposed framework, such as improving the readability of the diarized transcript, or reducing the word diarization error rate (WDER). In this framework, the outputs of the automatic speech recognition (ASR) and speaker diarization systems are represented as a compact textual format, which is included in the prompt to an optionally finetuned LLM. The outputs of the LLM can be used as the refined diarization results with the desired enhancement. As a post-processing step, this framework can be easily applied to any off-the-shelf ASR and speaker diarization systems without retraining existing components. Our experiments show that a finetuned PaLM 2-S model can reduce the WDER by rel. 55.5% on the Fisher telephone conversation dataset, and rel. 44.9% on the Callhome English dataset. View details
    Large Scale Self-Supervised Pretraining for Active Speaker Detection
    Alice Chuang
    Keith Johnson
    Olivier Siohan
    Yunfan Ye
    ICASSP 2024 (2024) (to appear)
    Preview abstract In this work we investigate the impact of a large-scale self-supervised pretraining strategy for active speaker detection (ASD) on an unlabeled dataset consisting of over 125k hours of YouTube videos. When compared to a baseline trained from scratch on much smaller in-domain labeled datasets we show that with pretraining we not only have a more stable supervised training due to better audio-visual features used for initialization, but also improve the ASD mean average precision by 23\% on a challenging dataset collected with Google Nest Hub Max devices capturing real user interactions. View details
    Preview abstract In this paper, we present a novel speaker diarization system for streaming on-device applications. In this system, we use a transformer transducer to detect the speaker turns, represent each speaker turn by a speaker embedding, then cluster these embeddings with constraints from the detected speaker turns. Compared with conventional clustering-based diarization systems, our system largely reduces the computational cost of clustering due to the sparsity of speaker turns. Unlike other supervised speaker diarization systems which require annotations of timestamped speaker labels, our system only requires including speaker turn tokens during the transcribing process, which largely reduces the human efforts involved in data collection. View details