Ruibo Liu

Ruibo Liu

Moonshot AI research.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    VaultGemma
    Lynn Chua
    Prem Eruvbetine
    Chiyuan Zhang
    Thomas Mesnard
    Borja De Balle Pigem
    Daogao Liu
    Amer Sinha
    Pritish Kamath
    Yangsibo Huang
    Christopher A. Choquette-Choo
    George Kaissis
    Armand Joulin
    Da Yu
    Ryan McKenna
    arxiv (2025)
    Preview abstract In this work, we present VaultGemma 1B, a model based on the Gemma family of models fully trained with differential privacy. VaultGemma 1B is 1 billion parameter pretrained model based on the Gemma 2 series of models and uses the same dataset for training. We will be releasing a tech report and the weights of this model. View details
    Preview abstract Successful and effective communication between humans and AI relies on a shared experience of the world. By training solely on written text, current language models (LMs) miss the grounded experience of humans in the real-world—their failure to relate language to the physical world causes knowledge to be misrepresented and obvious mistakes in their reasoning. We present Mind's Eye, a paradigm to ground language model reasoning in the physical world. Given a physical reasoning question, we use a computational physics engine (DeepMind’s MuJoCo) to simulate the possible outcomes, and then use the simulation results as part of the input, which enables language models to perform reasoning. Experiments on 39 tasks in a physics alignment benchmark demonstrate that Mind's Eye can improve reasoning ability by a large margin (27.9% zero-shot, and 46.0% few-shot absolute accuracy improvement on average). Smaller language models armed with Mind's Eye can obtain similar performance to models that are 100× larger. Finally, we confirm the robustness of Mind's Eye through ablation studies. View details