Lala Li

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    FIT: Far-reaching Interleaved Transformers
    Ting Chen
    arXiv preprint arXiv:2305.12689 (2023) (to appear)
    Preview abstract We present FIT: a transformer-based architecture with efficient self-attention and adaptive computation. Unlike original transformers, which operate on a single sequence of data tokens, we divide the data tokens into groups, with each group being a shorter sequence of tokens. We employ two types of transformer layers: local layers operate on data tokens within each group, while global layers operate on a smaller set of introduced latent tokens. These layers, comprising the same set of self-attention and feed-forward layers as standard transformers, are interleaved, and cross-attention is used to facilitate information exchange between data and latent tokens within the same group. The attention complexity is O(n^2) locally within each group of size n, but can reach O(L^{4/3}) globally for sequence length of L. The efficiency can be further enhanced by relying more on global layers that perform adaptive computation using a smaller set of latent tokens. FIT is a versatile architecture and can function as an encoder, diffusion decoder, or autoregressive decoder. We provide initial evidence demonstrating its effectiveness in high-resolution image understanding and generation tasks. Notably, FIT exhibits potential in performing end-to-end training on gigabit-scale data, such as 6400×6400 images, or 160K tokens (after patch tokenization), within a memory capacity of 16GB, without requiring specific optimizations or model parallelism. View details
    A Generalist Framework for Panoptic Segmentation of Images and Videos
    Ting Chen
    Geoffrey Hinton
    International Conference on Computer Vision (ICCV) (2023)
    Preview abstract Panoptic segmentation assigns semantic and instance ID labels to every pixel of an image. As permutations of instance IDs are also valid solutions, the task requires learning of high-dimensional one-to-many mapping. As a result, state-of-the-art approaches use customized architectures and task-specific loss functions. We formulate panoptic segmentation as a discrete data generation problem, without relying on inductive bias of the task. A diffusion model is proposed to model panoptic masks, with a simple architecture and generic loss function. By simply adding past predictions as a conditioning signal, our method is capable of modeling video (in a streaming setting) and thereby learns to track object instances automatically. With extensive experiments, we demonstrate that our simple approach can perform competitively to state-of-the-art specialist methods in similar settings. View details
    A Unified Sequence Interface for Vision Tasks
    Ting Chen
    Tsung-Yi Lin
    Geoffrey Hinton
    Advances in Neural Information Processing Systems (NeurIPS) (2022)
    Preview abstract While language tasks are naturally expressed in a single, unified, modeling framework, i.e., generating sequences of tokens, this has not been the case in computer vision. As a result, there is a proliferation of distinct architectures and loss functions for different vision tasks. In this work we show that a diverse set of "core" computer vision tasks can also be unified if formulated in terms of a shared pixel-to-sequence interface. We focus on four tasks, namely, object detection, instance segmentation, keypoint detection, and image captioning, all with diverse types of outputs, e.g., bounding boxes or dense masks. Despite that, by formulating the output of each task as a sequence of discrete tokens with a unified interface, we show that one can train a neural network with a single model architecture and loss function on all these tasks, with no task-specific customization. To solve a specific task, we use a short prompt as task description, and the sequence output adapts to the prompt so it can produce task-specific output. We show that such a model can achieve competitive performance compared to well-established task-specific models. View details
    Pix2seq: A Language Modeling Framework for Object Detection
    Ting Chen
    Geoffrey Everest Hinton
    International Conference on Learning Representations (2022)
    Preview abstract We present Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural network to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural network knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms. View details
    Intriguing Properties of Contrastive Losses
    Ting Chen
    Calvin Luo
    Advances in Neural Information Processing Systems (2021)
    Preview abstract We study three intriguing properties of contrastive learning. First, we generalize the standard contrastive loss to a broader family of losses, and we find that various instantiations of the generalized loss perform similarly under the presence of a multi-layer non-linear projection head. Second, we study if instance-based contrastive learning (with a global image representation) can learn well on images with multiple objects present. We find that meaningful hierarchical local features can be learned despite the fact that these objectives operate on global instance-level features. Finally, we study the phenomenon of feature suppression among competing features shared across augmented views, such as "color distribution" vs "object class". We construct datasets with explicit and controllable competing features, and show that, for contrastive learning, a few bits of easy-to-learn shared features can suppress, and even fully prevent, the learning of other sets of competing features. In scenarios where there are multiple objects in an image, the dominant object would suppress the learning of smaller objects. Existing contrastive learning methods critically rely on data augmentation to favor certain sets of features over others, and could suffer from learning saturation for scenarios where existing augmentations cannot fully address the feature suppression. This poses open challenges to existing contrastive learning techniques. View details
    Differentiable Product Quantization for End-to-End Embedding Compression
    Ting Chen
    Yizhou Sun
    International Conference on Machine Learning (2020)
    Preview abstract Embedding layers are commonly used to map discrete symbols into continuous embedding vectors that reflect their semantic meanings. Despite their effectiveness, the number of parameters in an embedding layer increases linearly with the number of symbols and poses a critical challenge on memory and storage constraints. In this work, we propose a generic and end-to-end learnable compression framework termed differentiable product quantization (DPQ). We present two instantiations of DPQ that leverage different approximation techniques to enable differentiability in end-to-end learning. Our method can readily serve as a drop-in alternative for any existing embedding layer. Empirically, DPQ offers significant compression ratios (14-238×) at negligible or no performance cost on 10 datasets across three different language tasks. View details
    Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model
    Guodong Zhang
    James Martens
    Sushant Sachdeva
    Chris Shallue
    Roger Grosse
    2019 Conference on Neural Information Processing Systems (2019)
    Preview abstract Increasing the batch size is a popular way to speed up neural network training, but beyond some critical batch size, larger batch sizes yield diminishing returns. In this work, we study how the critical batch size changes based on properties of the optimization algorithm, including acceleration and preconditioning, through two different lenses: large scale experiments, and analysis of a simple noisy quadratic model (NQM). We experimentally demonstrate that optimization algorithms that employ preconditioning, specifically Adam and K-FAC, result in much larger critical batch sizes than stochastic gradient descent with momentum. We also demonstrate that the NQM captures many of the essential features of real neural network training, despite being drastically simpler to work with. The NQM predicts our results with preconditioned optimizers, previous results with accelerated gradient descent, and other results around optimal learning rates and large batch training, making it a useful tool to generate testable predictions about neural network optimization. View details