Tomas Pfister
Tomas Pfister is the Head of Cloud AI Research. He came to Google from Apple where he cofounded Apple's central AI research group and published Apple’s first research paper that won the Best Paper Award at CVPR’17. Tomas’ key scientific achievements have been proposing a method to improve the realism of synthetic images; developing the first automated method to detect facial micro-expressions; and inventing a new way for neural networks to exploit spatiotemporal structure. He is currently exploring learning from small amount of labeled data (using techniques such as generative models, few-shot learning, transfer learning) and explainability/interpretability of deep learning models, and is particularly excited about the potential of AI in healthcare & education. His research has laid the foundation for several applications such as Face ID in iPhone X, autonomous driving, human pose estimation, detecting facial micro-expressions & translating sign language. Tomas did his PhD in deep learning with Prof Andrew Zisserman at Oxford University and bachelor’s degree in computer science at Cambridge University. He is the recipient of the Forbes 30 Under 30 award, and has received over 40 research awards, including 3 best paper awards, with numerous publications in top AI research venues. His work has been frequently featured in mainstream media, including Forbes, BusinessInsider & Wired.
Authored Publications
Sort By
PLAN-TUNING: Post-Training Language Models to Learn Step-by-Step Planning for Complex Problem Solving
Mihir Parmar
Chitta Baral
Mingyang Ling
2025
Preview abstract
Recently, decomposing complex problems into simple subtasks--a crucial part of human-like natural planning--to solve the given problem has significantly boosted the performance of large language models (LLMs). However, leveraging such planning structures during post-training to boost the performance of smaller open-source LLMs remains underexplored. Motivated by this, we introduce Plan-Tuning, a unified post-training framework that (i) distills synthetic task decompositions (termed “planning trajectories”) from large-scale LLMs and (ii) fine-tunes smaller models via supervised and reinforcement-learning objectives designed to mimic these planning processes to improve complex reasoning. On GSM8k and the MATH benchmarks, plan-tuned models outperform strong baselines by an average ~7%. Furthermore, plan-tuned models show better generalization capabilities on out-of-domain datasets, with average ~10% and ~12% performance improvements on OlympiadBench and AIME 2024, respectively. Our detailed analysis demonstrates how planning trajectories improves complex reasoning capabilities, showing that Plan-Tuning is an effective strategy for improving task-specific performance of smaller LLMs.
View details
Preview abstract
Automating data visualization from natural language is crucial for data science, yet current systems struggle with complex, multi-file datasets and iterative refinement. Existing approaches, including simple single- or multi-agent systems, often oversimplify the task, focusing on initial query parsing while failing to robustly manage data complexity, code errors, or final visualization quality. In this paper, we reframe this challenge as a collaborative multi-agent problem. We introduce CoDA, a multi-agent system that employs specialized LLM agents for metadata analysis, task planning, code generation, and iterative reflection. We formalize this pipeline, demonstrating how metadata-focused analysis bypasses token limits and quality-driven refinement ensures robustness. Extensive evaluations show CoDA achieves substantial accuracy gains, outperforming competitive baselines by up to 49.0%. This work advocates that future visualization automation should evolve from isolated code generation to integrated, collaborative agentic workflows.
View details
Preview abstract
Large language models (LLMs), optimized through human feedback, have rapidly emerged as a leading paradigm for developing intelligent conversational assistants. However, despite their strong performance across many benchmarks, LLM-based agents might still lack conversational skills such as disambiguation -- when they are faced with ambiguity, they often overhedge or implicitly guess users' true intents rather than asking clarification questions. Under task-specific settings, high-quality conversation samples are often limited, constituting a bottleneck for LLMs' ability to learn optimal dialogue action policies. We propose Action-Based Contrastive Self-Training (ACT), a quasi-online preference optimization algorithm based on Direct Preference Optimization (DPO), that enables data-efficient dialogue policy learning in multi-turn conversation modeling. We demonstrate ACT's efficacy under data-efficient tuning scenarios, even when there is no action label available, using multiple real-world conversational tasks: tabular-grounded question-answering, machine reading comprehension, and AmbigSQL, a novel task for disambiguating information-seeking requests for complex SQL generation towards data analysis agents. Additionally, we propose evaluating LLMs' ability to function as conversational agents by examining whether they can implicitly recognize and reason about ambiguity in conversation. ACT demonstrates substantial conversation modeling improvements over standard tuning approaches like supervised fine-tuning and DPO.
View details
Preview abstract
While Large Language Models (LLMs) have shown remarkable advancements in reasoning and tool use, they often fail to generate optimal, grounded solutions under complex constraints. Real-world travel planning exemplifies these challenges, evaluating agents' abilities to handle constraints that are explicit, implicit, and even evolving based on interactions with dynamic environments and user needs. In this paper, we present ATLAS, a general multi-agent framework designed to effectively handle such complex nature of constraints awareness in real-world travel planning tasks. Our framework introduces a principled approach to address the fundamental challenges of constraint-aware planning through dedicated mechanisms for dynamic constraint management, iterative plan critique, and adaptive interleaved search. ATLAS demonstrates state-of-the-art performance on the TravelPlanner benchmark, improving the final pass rate from 17.8% to 44.4% over its best alternative. More importantly, this is the first work to be evaluated in and demonstrate quantitative effectiveness on real-world travel planning with live information search and multi-turn feedback. In this realistic setting, ATLAS demonstrates its ability to adapt to multi-turn user feedback, achieving an 84% final pass rate which significantly outperforms baselines including ReAct (59%) and a monolithic agent (27%).
View details
Blackboard Multi-Agent Systems for Information Discovery in Data Science
Hamed Zamani
Mihir Parmar
ALIREZA SALEMI
2025
Preview abstract
The proliferation of Large Language Models (LLMs) has opened new opportunities in data science, yet their practical deployment is often constrained by the challenge of discovering relevant data within large and heterogeneous data lakes. Existing approaches, including single-agent and master–slave multi-agent systems, struggle with scalability, information heterogeneity, and robustness to irrelevant files. To address these limitations, we propose a novel multi-agent communication paradigm inspired by the blackboard architecture in traditional AI and software design. In this framework, a central agent posts information requests to a shared blackboard, and autonomous subordinate agents---each responsible for a partition of the data lake---volunteer to respond based on their capabilities. This distributed design improves scalability and flexibility by eliminating the need for a central coordinator to have prior knowledge of agent expertise. We evaluate the approach on three benchmarks that require explicit data discovery: KramaBench and modified versions of DS-Bench and DA-Code to incorporate data discovery. Experimental results demonstrate that the blackboard architecture substantially outperforms baselines, including RAG and the master–slave paradigm, achieving 13% to 57% relative improvement in end-to-end task success and up to a 9% relative gain in F1 score for data discovery across both proprietary and open-source LLMs. These findings establish the blackboard paradigm as a scalable and generalizable communication framework for multi-agent data science systems.
View details
Preview abstract
Agents based on large language models (LLMs) for machine learning engineering (MLE) can automatically implement ML models via code generation. However, existing approaches to build such agents often rely heavily on inherent LLM knowledge and employ coarse exploration strategies that modify the entire code structure at once. This limits their ability to select effective task-specific models and perform deep exploration within specific components, such as experimenting extensively with feature engineering options. To overcome these, we propose MLE-STAR, a novel approach to build MLE agents. MLESTAR first leverages external knowledge by using a search engine to retrieve effective models from the web, forming an initial solution, then iteratively refines it by exploring various strategies targeting specific ML components. This exploration is guided by ablation studies analyzing the impact of individual code blocks. Furthermore, we introduce a novel ensembling method using an effective strategy suggested by MLE-STAR. Our experimental results show that MLE-STAR achieves medals in 64% of the Kaggle competitions on the MLE-bench Lite, significantly outperforming the best alternative.
View details
TUMIX: Augmenting LLM Reasoning with a Dynamic Tool-Use Mixture
Chuchu Fan
Na Li
Chi Wang
Ji Yin
Yongchao Chen
Rui Meng
2025
Preview abstract
Integrating tools like Code Interpreter and Search has significantly improved Large Language Models (LLMs) reasoning, as shown by leading models such as OpenAI's ChatGPT Agent, Google's Gemini-Pro, and XAI's Grok4. However, the research community still lacks practical guidance on fully leveraging these tools. The main challenge lies in finding an effective method to fully exploit the benefits of textual reasoning, coding, and searching when facing distinctive questions. To address this, we propose an ensemble-based framework that runs multiple agents in parallel, each exploring different answer paths with distinct tool-use strategies. Agents iteratively share and refine their answers by considering the original question and previous responses. Our proposed method Tool-Use Mixture (TUMIX) achieves significant gains over other representative tool-augmented test-time scaling methods such as Self-MoA, Symbolic-MoE, DEI, SciMaster, and GSA. With near equal inference costs, TUMIX delivers an average +3.55% accuracy improvement over the best baseline on Gemini-2.5-Pro and Gemini-2.5-Flash across key reasoning benchmarks (HLE, GPQA, AIME 24&25), where coding and search can effectively support reasoning when applied properly. We find that agent diversity and quality are crucial, and can be further improved by querying LLMs to automatically optimize agent designs. To reduce costs, TUMIX halts refinement once sufficient confidence is reached, preserving nearly the same performance at just 49% of the inference cost. With further scaling, TUMIX can achieve even higher performance, though at substantially greater cost.
View details
Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling
Lei Li
Wenda Xu
Rishabh Agarwal
William Wang
Dhruv Madeka
ICLR 2025
Preview abstract
Recent knowledge distillation (KD) research made significant progress on improving smaller student models to match larger teachers' performances. Two noticeable methods, supervised KD and on-policy KD emerged as the state-of-the-art approaches. However, supervised KD for auto-regressive models suffers from distribution mismatch between training over fixed dataset and inference over student generated outputs. Conversely, on-policy KD, which uses student-generated samples for training, can suffer from low-quality training examples and the teacher's potential inaccuracies in assessing these samples. To address these limitations, we introduce Speculative Knowledge Distillation (SKD). Instead of solely training on teacher- or student-proposed samples, SKD leverages the student model to initially propose tokens following its own generation distribution. Subsequently, the teacher model is employed to replace tokens that are deemed out-of-distribution. Compared with supervised KD, the samples generated by SKD are more likely to align with the student's inference-time distribution, and 2) SKD can mitigate the generation of low-quality sequences by incorporating the teacher's feedback at each token. Furthermore, we demonstrate that SKD is a generic framework capable of implementing both supervised and on-policy knowledge distillation as specific instances. To validate SKD's effectiveness, we apply it to distill autoregressive large language models for various tasks, including translation, summarization, math, and instruction following. Our experiments consistently demonstrate SKD's superior performance compared to existing methods across different domains, tasks, data sizes, and model initialization strategies.
View details
Preview abstract
Data science, which transforms raw data into actionable insights, is critical for data-driven decision-making. However, these tasks are often complex, involving steps like exploring multiple data sources and synthesizing findings to deliver clear answers. While large language model (LLM) agents show significant promise in automating this process, they often struggle with heterogeneous data formats and generate sub-optimal analysis plans, as verifying plan correctness is inherently difficult without ground-truth labels for such open-ended tasks. To overcome these limitations, we introduce DS-STAR, a novel data science agent. Specifically, DS-STAR makes three key contributions: (1) a data file analysis module that automatically reads and extracts context from diverse data formats, including unstructured types; (2) a verification step where an LLM-based judge evaluates the sufficiency of the analysis plan at each stage; and (3) a sequential planning mechanism that starts with a simple, executable plan and iteratively refines it based the DS-STAR's feedback until its sufficiency is confirmed. This iterative refinement allows DS-STAR to reliably navigate complex analyses involving varied data sources. Our experiments show that DS-STAR achieves state-of-the-art performance, improving accuracy on the challenging DABStep benchmark from 41.0% to 45.2% and on Kramabench from 31.3% to 44.7%. These results demonstrate the effectiveness of our approach for practical, multi-step data science tasks.
View details
Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling
Wenda Xu
Dhruv Madeka
Lei Li
William Wang
Rishabh Agarwal
2025
Preview abstract
Recent advances in knowledge distillation (KD) have enabled smaller student models to approach the performance of larger teacher models. However, popular methods such as supervised KD and on-policy KD, are adversely impacted by the knowledge gaps between teacher-student in practical scenarios. Supervised KD suffers from a distribution mismatch between training with a static dataset and inference over final student-generated outputs. Conversely, on-policy KD, which uses student-generated samples for training, can suffer from low-quality training examples with which teacher models are not familiar, resulting in inaccurate teacher feedback. To address these limitations, we introduce Speculative Knowledge Distillation (SKD), a novel approach that leverages cooperation between student and teacher models to generate high-quality training data on-the-fly while aligning with the student’s inference-time distribution. In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution, transferring high-quality knowledge adaptively. We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following, and show that SKD consistently outperforms existing KD methods across different domains, data sizes, and model initialization strategies
View details