Tomas Pfister

Tomas Pfister

Tomas Pfister is the Head of Cloud AI Research. He came to Google from Apple where he cofounded Apple's central AI research group and published Apple’s first research paper that won the Best Paper Award at CVPR’17. Tomas’ key scientific achievements have been proposing a method to improve the realism of synthetic images; developing the first automated method to detect facial micro-expressions; and inventing a new way for neural networks to exploit spatiotemporal structure. He is currently exploring learning from small amount of labeled data (using techniques such as generative models, few-shot learning, transfer learning) and explainability/interpretability of deep learning models, and is particularly excited about the potential of AI in healthcare & education. His research has laid the foundation for several applications such as Face ID in iPhone X, autonomous driving, human pose estimation, detecting facial micro-expressions & translating sign language. Tomas did his PhD in deep learning with Prof Andrew Zisserman at Oxford University and bachelor’s degree in computer science at Cambridge University. He is the recipient of the Forbes 30 Under 30 award, and has received over 40 research awards, including 3 best paper awards, with numerous publications in top AI research venues. His work has been frequently featured in mainstream media, including Forbes, BusinessInsider & Wired.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM choices. View details
    Preview abstract Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts. View details
    Preview abstract Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs' output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning. View details
    Found in the middle: Calibrating Positional Attention Bias Improves Long Context Utilization
    Cheng-Yu Hsieh
    Yung-Sung Chuang
    Chun-Liang Li
    Abhishek Kumar
    James Glass
    Alexander Ratner
    Ranjay Krishna
    Preview abstract Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input. This phenomenon has been known as the lost-in-the-middle problem. In this work, we make three contributions. First, we set out to understand the factors that cause this phenomenon. In doing so, we establish a connection between lost-in-the-middle to LLMs' intrinsic attention bias: LLMs exhibit a U-shaped attention bias where the tokens at the beginning and at the end of its input receive higher attention, regardless of their relevance. Second, we mitigate this positional bias through a calibration mechanism, found-in-the-middle, that allows the model to attend to contexts faithfully according to their relevance, even though when they are in the middle. Third, we show found-in-the-middle not only achieves better performance in locating relevant information within a long context, but also eventually leads to improved retrieval-augmented generation (RAG) performance across various tasks, outperforming existing methods by up to 15 percentage points. These findings open up future directions in understanding LLM attention bias and its potential consequences. View details
    Preview abstract Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain. These predictions can then be deferred to humans for further evaluation. As an everlasting challenge for machine learning, in many real-world scenarios, the distribution of test data is different from the training data. This results in more inaccurate predictions, and often increased dependence on humans, which can be difficult and expensive. Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples. Selective prediction and active learning have been approached from different angles, with the connection between them missing. In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain while increasing accuracy and coverage. For this new paradigm, we propose a simple yet effective approach, ASPEST, that utilizes ensembles of model snapshots with self-training with their aggregated outputs as pseudo labels. Extensive experiments on numerous image, text and structured datasets, which suffer from domain shifts, demonstrate that ASPEST can significantly outperform prior work on selective prediction and active learning (e.g. on the MNIST→SVHN benchmark with the labeling budget of 100, ASPEST improves the AUACC metric from 79.36% to 88.84%) and achieves more optimal utilization of humans in the loop. View details
    Preview abstract Modern large language models (LLMs) have demonstrated impressive capabilities at sophisticated tasks, often through step-by-step reasoning similar to humans. This is made possible by their strong few-shot and zero shot abilities: they either learn from a handful of handcrafted, completed responses (“in context examples”), or are prompted to reason spontaneously through specially designed triggers. Nonetheless, few-shot performance is sensitive to the choice of the examples, for which artisanal hand-crafted selection would require extensive effort, and in some cases, it might not even be possible to obtain relevant examples a-priori without expertise about the downstream tasks. On the other hand, most general and handcrafting-free, zero-shot performance is limited by the lack of guidance to the LLM. To address this, we propose Consistency-based Self-adaptive Prompting (COSP), a novel prompt design method for LLMs. Requiring neither handcrafted responses nor ground-truth labels, COSP selects & builds the set of examples from the LLM’s own zero-shot outputs via carefully designed criteria combining consistency, diversity and repetition. In zero-shot setting, with only LLM predictions, COSP significantly improves performance (up to 2× compared to zero-shot baselines and matching or exceeding few-shot baselines) in a range of reasoning tasks in 3 LLMs. Moreover, COSP can be generalized to few-shot setting and can take advantage of few labeled examples in an efficient way View details
    Preview abstract Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose "SQLPrompt", tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs ("MixPrompt") and foundation models ("MixLLMs"). We show that SQLPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin, closing the gap with finetuning state-of the-art with thousands of labeled data. View details
    Pic2Word: Mapping Pictures to Words for Zero-shot Composed Image Retrieval
    Kuniaki Saito
    Kihyuk Sohn
    Xiang Zhang
    Chun-Liang Li
    Kate Saenko
    CVPR(2023)
    Preview abstract In Composed Image Retrieval (CIR), a user combines a query image with text to describe their intended target. Existing methods rely on supervised learning of CIR models using labeled triplets consisting of the query image, text specification, and the target image. Labeling such triplets is expensive and hinders broad applicability of CIR. In this work, we propose to study an important task, Zero-Shot Composed Image Retrieval (ZS-CIR), whose goal is to build a CIR model without requiring labeled triplets for training. To this end, we propose a novel method, called Pic2Word, that requires only weakly labeled image-caption pairs and unlabeled image datasets to train. Unlike existing supervised CIR models, our model trained on weakly labeled or unlabeled datasets shows strong generalization across diverse ZS-CIR tasks, e.g., attribute editing, object composition, and domain conversion. Our approach outperforms several supervised CIR methods on the common CIR benchmark, CIRR and Fashion-IQ. View details
    Prefix Conditioning Unifies Language and Label Supervision
    Kuniaki Saito
    Kihyuk Sohn
    Xiang Zhang
    Chun-Liang Li
    Kate Saenko
    CVPR(2023)
    Preview abstract Vision-language contrastive learning suggests a new learning paradigm by leveraging a large amount of image-caption-pair data. The caption supervision excels at providing wide coverage in vocabulary that enables strong zero-shot image recognition performance. On the other hand, label supervision offers to learn more targeted visual representations that are label-oriented and can cover rare categories. To gain the complementary advantages of both kinds of supervision for contrastive image-caption pre-training, recent works have proposed to convert class labels into a sentence with pre-defined templates called prompts. However, a naive unification of the real caption and the prompt sentences could lead to a complication in learning, as the distribution shift in text may not be handled properly in the language encoder. In this work, we propose a simple yet effective approach to unify these two types of supervision using prefix tokens that inform a language encoder of the type of the input sentence (e.g., caption or prompt) at training time. Our method is generic and can be easily integrated into existing VL pre-training objectives such as CLIP or UniCL. In experiments, we show that this simple technique dramatically improves the performance in zero-shot image recognition accuracy of the pre-trained model. View details
    Preview abstract We study anomaly clustering, grouping data into coherent clusters of anomaly types. This is different from anomaly detection that aims to divide anomalies from normal data.Unlike object-centered image clustering, anomaly clustering is particularly challenging as anomalous patterns are subtle and local. We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods. We define a distance function between images, each of which is represented as a bag of embeddings, by the Euclidean distance between weighted averaged embeddings. The weight defines the importance of instances (i.e., patch embeddings) in the bag, which may highlight defective regions. We compute weights in an unsupervised way or in a semi-supervised way when labeled normal data is available. Extensive experimental studies show the effectiveness of the proposed clustering framework along with a novel distance function upon existing multiple instance or deep clustering frameworks. Overall, our framework achieves 0.451 and 0.674 normalized mutual information scores on MVTec object and texture categories and further improve with a few labeled normal data(0.577, 0.669), far exceeding the baselines (0.244, 0.273)or state-of-the-art deep clustering methods (0.176, 0.277). View details