Benjamin Solnik

Benjamin Solnik

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Any sufficiently complex system acts as a black box when it becomes easier to experiment with than to understand. Hence, black-box optimization has become increasingly important as systems have become more complex. In this paper we describe Google Vizier, a Google-internal service for performing black-box optimization that has become the de facto parameter tuning engine at Google. Google Vizier is used to optimize many of our machine learning models and other systems, and also provides core capabilities to Google's Cloud Machine Learning HyperTune subsystem. We discuss our requirements, infrastructure design, underlying algorithms, and advanced features such as transfer learning and automated early stopping that the service provides. View details
    Bayesian Optimization for a Better Dessert
    Subhodeep Moitra
    Proceedings of the 2017 NIPS Workshop on Bayesian Optimization, December 9, 2017, Long Beach, USA (to appear)
    Preview abstract We present a case study on applying Bayesian Optimization to a complex real-world system; our challenge was to optimize chocolate chip cookies. The process was a mixed-initiative system where both human chefs, human raters, and a machine optimizer participated in 144 experiments. This process resulted in highly rated cookies that deviated from expectations in some surprising ways -- much less sugar in California, and cayenne in Pittsburgh. Our experience highlights the importance of incorporating domain expertise and the value of transfer learning approaches. View details