
Google at ICLR 2025
Google at ICLR 2025
The Thirteenth International Conference on Learning Representations (ICLR 2025), a premier conference on deep learning, is being held Thursday, April 24 through Monday April 28th in Singapore. Google is proud to be a Diamond Sponsor of ICLR 2025, where researchers from across Google will contribute at all levels. This year we are presenting over 125 papers and are actively involved in a number of different events, including 26 workshops, 14 orals, and several in-booth demo sessions.
Attending ICLR 2025 in person? Stop by the Google booth (G01) to learn more about the exciting work we’re doing across topics spanning reinforcement learning, enterprise AI, large language models, theory and optimization, societal impact, safety and privacy, and more. Visit the @GoogleAI X (formerly Twitter) and Google Research LinkedIn accounts to find out about Google booth activities (e.g., demos and Q&A sessions, which are also listed below).
Continue below to learn more about how Google researchers are engaged at ICLR 2025 (Google affiliations highlighted in bold).
All session times are provided in SGT.
Google Booth Demos Schedule
*Dates and times may be subject to change. Stop by the Google booth (G01) for more info.
-
Thursday, April 24 | 10:00 AM
Real-World Agent Research: A Demo from Google Cloud AI ResearchPresenters: Tomas Pfister, Jinsung Yoon
-
Thursday, April 24 | 12:00 PM
Project Astra: A research prototype exploring future capabilities of a universal AI assistantPresenter: Vahid Ghadakchi
-
Thursday, April 24 | 3:00 PM
The Power of Context: How Multimodality Improves Computational PhotographyPresenter: Kangfu Mei
-
Thursday, April 24 | 5:00 PM
An introduction to Isomorphic Labs: Towards a System for Rational Drug Design with AIPresenters: Agnieszka Podsiadlo
-
Friday, April 25 | 10:00 AM
Gemini Robotics: Bringing AI into the Physical WorldPresenters: Dhruv Shah, Wenhao Yu, Sean Kirmani, Tingnan Zhang
-
Friday, April 25 | 12:00 PM
ZAPBench: A Benchmark for Whole-Brain Activity Prediction in ZebrafishPresenters: Jan-Matthis Lückmann, Michał Januszewski
-
Friday, April 25 | 3:00 PM
FunSearch: Making new discoveries in mathematical sciences using Large Language ModelsPresenters: Sergey Shirobokov, Emilien Dupont
-
Friday, April 25 | 5:00 PM
Build agents using ADKPresenter: Zizhao Zhang
-
Saturday, April 26 | 10:00 AM
Protein Function - Prediction & VerificationPresenters: Sergii Kashubin, Andreea Gane
-
Saturday, April 26 | 12:00 PM
Gecko: a capability-based evaluator for generative modelsPresenters: Olivia Wiles, Ira Ktena, Anant Nawalgaria, Chuhan Zhang
-
Saturday, April 26 | 3:00 PM
Can learning algorithms discover when randomization is beneficial?Presenters: Seijin Kobayashi, Johannes von Oswald
-
Saturday, April 26 | 5:00 PM
Genie 2: A large-scale foundation world modelPresenters: Jack Parker-Holder, Philip Ball
Keynote
Sat, Apr 26 | 2:00PM — 3:00PM, Hall 1 Apex
Open-Endedness, World Models, and the Automation of Innovation
Speaker: Tim Rocktäschel
Expo & oral talks
-
Thu, Apr 24 | 1:00PM — 2:00PM, Garnet 213 - 215
Agent Research in the Real WorldOrganizer: Tomas Pfister, Jinsung Yoon
-
Oral: Thu, Apr 24 | 10:30AM — 10:42AM (Oral Session 1A)
Scaling LLM Test-Time Compute Optimally Can Be More Effective Than Scaling Parameters for ReasoningCharlie Victor Snell*, Jaehoon Lee, Kelvin Xu, Aviral Kumar
-
Oral: Thu, Apr 24 | 10:54AM — 11:06AM (Oral Session 1A)
Inference Scaling for Long-Context Retrieval Augmented GenerationZhenrui Yue*, Honglei Zhuang, Aijun Bai, Kai Hui, Rolf Jagerman, Hansi Zeng*, Zhen Qin, Dong Wang, Xuanhui Wang, Michael Bendersky
-
Oral: Thu, Apr 24 | 10:42AM — 10:54AM (Oral Session 1D)
Safety Alignment Should Be Made More Than Just a Few Tokens DeepXiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, Peter Henderson
-
Oral: Fri, Apr 25 | 10:30AM — 10:42AM (Oral Session 3C)
Restructuring Vector Quantization With the Rotation TrickChristopher Fifty, Ronald G. Junkins, Dennis Duan, Aniketh Iyengar, Jerry W. Liu, Ehsan Amid, Sebastian Thrun, Christopher Ré
-
Oral: Fri, Apr 25 | 10:54AM — 11:06AM (Oral Session 3E)
LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA OptimizationJui-Nan Yen*, Si Si, Zhao Meng, Felix Yu, Sai Surya Duvvuri*, Inderjit S. Dhillon, Cho-Jui Hsieh, Sanjiv Kumar
-
Oral: Fri, Apr 25 | 10:42AM — 10:54AM (Oral Session 3F)
RMP-SAM: Towards Real-Time Multi-Purpose Segment AnythingShilin Xu, Haobo Yuan, Qingyu Shi, Lu Qi, Jingbo Wang, Yibo Yang, Yining Li, Kai Chen, Yunhai Tong, Bernard Ghanem, Xiangtai Li, Ming-Hsuan Yang
-
Oral: Fri, Apr 25 | 3:42PM — 3:54PM (Oral Session 4B)
Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL WorkflowsFangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida I. Wang, Tao Yu
-
Oral: Fri, Apr 25 | 4:06PM — 4:18PM (Oral Session 4D)
RB-Modulation: Training-Free Stylization Using Reference-Based ModulationLitu Rout*, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, Wen-Sheng Chu
-
Oral: Sat, Apr 26 | 11:18AM — 11:30AM (Oral Session 5A)
Linear Representations of Political Perspective Emerge in Large Language ModelsJunsol Kim, James Evans, Aaron Schein
-
Oral: Sat, Apr 26 | 3:30PM — 3:42PM (Oral Session 6A)
Training Language Models to Self-Correct via Reinforcement LearningAviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, JD Co-Reyes, Avi Singh, Kate Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M. Zhang, Kay McKinney, Disha Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, Aleksandra Faust
-
Oral: Sat, Apr 26 | 4:18PM — 4:30PM (Oral Session 6B)
Faster Cascades via Speculative DecodingHarikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta*, Aditya Krishna Menon, Sanjiv Kumar
-
Oral: Sat, Apr 26 | 3:42PM — 3:54PM (Oral Session 6C)
Learning Randomized Algorithms With TransformersJohannes Von Oswald, Seijin Kobayashi, Yassir Akram, Angelika Steger
-
Oral: Sat, Apr 26 | 3:54PM — 4:06PM (Oral Session 6C)
Attention as a HypernetworkSimon Schug, Seijin Kobayashi, Yassir Akram, João Sacramento, Razvan Pascanu
-
Oral: Sat, Apr 26 | 4:30PM — 4:42PM (Oral Session 6E)
Learning Distributions of Complex Fluid Simulations With Diffusion Graph NetworksMario Lino, Tobias Pfaff, Nils Thuerey
Spotlights
-
Thu, Apr 24 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 1)
How New Data Permeates LLM Knowledge and How to Dilute ItChen Sun, Renat Aksitov, Andrey Zhmoginov, Nolan Andrew Miller, Max Vladymyrov, Ulrich Rueckert, Been Kim, Mark Sandler
-
Thu, Apr 24 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 1)
VLMaterial: Procedural Material Generation with Large Vision-Language ModelsBeichen Li, Rundi Wu, Armando Solar-Lezama, Changxi Zheng, Liang Shi, Bernd Bickel, Wojciech Matusik
-
Thu, Apr 24 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 2)
Better Autoregressive Regression with LLMs via Regression-Aware Fine-TuningMichal Lukasik, Zhao Meng, Harikrishna Narasimhan, Yin-Wen Chang, Aditya Krishna Menon, Felix X. Yu, Sanjiv Kumar
-
Thu, Apr 24 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 2)
BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive RetrievalHongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang, Haisu Liu, Quan Shi, Zachary S. Siegel, Michael Tang, Ruoxi Sun, Jinsung Yoon, Sercan Ö. Arik, Danqi Chen, Tao Yu
-
Thu, Apr 24 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 2)
Rewarding Progress: Scaling Automated Process Verifiers for LLM ReasoningAmrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh Agarwal, Jonathan Berant, Aviral Kumar
-
Thu, Apr 24 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 2)
TokenFormer: Rethinking Transformer Scaling with Tokenized Model ParametersHaiyang Wang, Yue Fan, Muhammad Ferjad Naeem, Yongqin Xian, Jan Eric Lenssen, Liwei Wang, Federico Tombari, Bernt Schiele
-
Thu, Apr 24 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 2)
ZAPBench: A Benchmark for Whole-Brain Activity Prediction in ZebrafishJan-Matthis Lueckmann, Alexander Immer, Alex Bo-Yuan Chen, Peter H. Li, Mariela D. Petkova, Nirmala A. Iyer, Luuk Willem Hesselink, Aparna Dev, Gudrun Ihrke, Woohyun Park, Alyson Petruncio, Aubrey Weigel, Wyatt Korff, Florian Engert, Jeff Lichtman, Misha Ahrens, Michał Januszewski, Viren Jain
-
Fri, Apr 25 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 3)
Bayesian Optimization via Continual Variational Last Layer TrainingPaul Brunzema, Mikkel Jordahn, John Willes, Sebastian Trimpe, Jasper Snoek, James Harrison
-
Fri, Apr 25 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 3)
Learning from Negative Feedback, or Positive Feedback or BothAbbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg, Tim Hertweck, Rishabh Joshi, Junhyuk Oh, Michael Bloesch, Thomas Lampe, Nicolas Heess, Jonas Buchli, Martin Riedmiller
-
Fri, Apr 25 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 3)
MonST3R: A Simple Approach for Estimating Geometry in the Presence of MotionJunyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun, Ming-Hsuan Yang
-
Fri, Apr 25 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 4)
CubeDiff: Repurposing Diffusion-Based Image Models for Panorama GenerationNikolai Kalischek, Michael Oechsle, Fabian Manhardt, Philipp Henzler, Konrad Schindler, Federico Tombari
-
Fri, Apr 25 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 4)
Dense Video Object Captioning From Disjoint SupervisionXingyi Zhou, Anurag Arnab, Chen Sun, Cordelia Schmid
-
Fri, Apr 25 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 4)
Effective Interplay Between Sparsity and Quantization: From Theory to PracticeSimla Burcu Harma, Ayan Chakraborty, Elizaveta Kostenok, Danila Mishin, Dongho Ha, Babak Falsafi, Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Subramanian, Amir Yazdanbakhsh
-
Fri, Apr 25 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 4)
Revisiting Text-to-Image Evaluation With Gecko: On Metrics, Prompts, and Human RatingOlivia Wiles, Chuhan Zhang, Isabela Albuquerque, Ivana Kajić, Su Wang, Emanuele Bugliarello, Yasumasa Onoe, Pinelopi Papalampidi, Ira Ktena, Chris Knutsen, Cyrus Rashtchian, Anant Nawalgaria, Jordi Pont-Tuset, Aida Nematzadeh
-
Fri, Apr 25 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 4)
Vision Language Models Are In-Context Value LearnersYecheng Jason Ma*, Joey Hejna, Chuyuan Fu, Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani, Peng Xu, Danny Driess, Ted Xiao, Osbert Bastani, Dinesh Jayaraman, Wenhao Yu, Tingnan Zhang, Dorsa Sadigh, Fei Xia
-
Sat, Apr 26 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 5)
Century: A Framework and Dataset for Evaluating Historical Contextualisation of Sensitive ImagesCanfer Akbulut, Kevin Robinson, Maribeth Rauh, Isabela Albuquerque, Olivia Wiles, Laura Weidinger, Verena Rieser, Yana Hasson, Nahema Marchal, Iason Gabriel, William Isaac, Lisa Anne Hendricks
-
Sat, Apr 26 | 10:00AM — 12:30PM, Hall 3 + Hall 2B (Poster Session 5)
Scaling up the Banded Matrix Factorization Mechanism for Differentially Private MLRyan McKenna
-
Sat, Apr 26 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 6)
Don't Flatten, Tokenize! Unlocking the Key to SoftMoE's Efficacy in Deep RLGhada Sokar, Johan Obando-Ceron, Aaron Courville, Hugo Larochelle, Pablo Samuel Castro
-
Sat, Apr 26 | 3:00PM — 5:30PM, Hall 3 + Hall 2B (Poster Session 6)
Fair Clustering in the Sliding Window ModelVincent Cohen-Addad, Shaofeng H.-C. Jiang, Qiaoyuan Yang, Yubo Zhang, Samson Zhou
Accepted Papers
Accelerating Neural Network Training: An Analysis of the AlgoPerf Competition
Priya Kasimbeg, Frank Schneider, Runa Eschenhagen, Juhan Bae, Chandramouli Shama Sastry, Mark Saroufim, Boyuan Feng, Less Wright, Edward Z. Yang, Zachary Nado, Sourabh Medapati, Philipp Hennig, Michael Rabbat, George E. Dahl
Block Verification Accelerates Speculative Decoding
Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, Ananda Theertha Suresh
Forte: Finding Outliers with Representation Typicality Estimation
Debargha Ganguly, Warren Morningstar, Andrew Yu, Vipin Chaudhary
Improving Language Model Distillation Through Hidden State Matching
Sayantan Dasgupta, Trevor Cohn
Improving Large Language Model Planning With Action Sequence Similarity
Xinran Zhao*, Hanie Sedghi, Bernd Bohnet, Dale Schuurmans, Azade Nova
MELODI: Exploring Memory Compression for Long Contexts
Yinpeng Chen, DeLesley Hutchins, Aren Jansen, Andrey Zhmoginov, David Racz, Jesper Andersen
Optimistic Games for Combinatorial Bayesian Optimization With Application to Protein Design
Melis Ilayda Bal, Pier Giuseppe Sessa, Mojmír Mutný, Andreas Krause
PFGuard: A Generative Framework With Privacy and Fairness Safeguards
Soyeon Kim, Yuji Roh, Geon Heo, Steven Euijong Whang
Privacy Auditing of Large Language Models
Ashwinee Panda, Xinyu Tang, Milad Nasr, Christopher A. Choquette-Choo, Prateek Mittal
ReCogLab: A Framework Testing Relational Reasoning & Cognitive Hypotheses on LLMs
Andrew Liu, Henry Prior, Gargi Balasubramaniam, Rivka Moroshko, Amir Zait, Ilia Labzovsky, Danny Karmon, Ishita Dasgupta, Kim Stachenfeld, Kenneth Marino
RRM: Robust Reward Model Training Mitigates Reward Hacking
Tianqi Liu, Wei Xiong*, Jie Ren, Lichang Chen*, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen, Zhen Qin, Tianhe Yu, Daniel Sohn, Anastasia Makarova, Jeremiah Liu, Yuan Liu, Bilal Piot, Abe Ittycheriah, Aviral Kumar, Mohammad Saleh
Selective Unlearning via Representation Erasure Using Domain Adversarial Training
Nazanin Mohammadi Sepahvand, Eleni Triantafillou, Hugo Larochelle, Doina Precup, James J. Clark, Daniel M. Roy, Gintare Karolina Dziugaite
Speculative RAG: Enhancing Retrieval Augmented Generation Through Drafting (see blog post)
Zilong Wang*, Zifeng Wang, Long T. Le, Huaixiu Steven Zheng, Swaroop Mishra, Vincent Perot, Yuwei Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, Tomas Pfister
SVG: 3D Stereoscopic Video Generation via Denoising Frame Matrix
Peng Dai*, Feitong Tan, Qiangeng Xu, David Futschik, Ruofei Du, Sean Fanello, Xiaojuan Qi, Yinda Zhang
Training LLMs Over Neurally Compressed Text
Brian Lester, Jaehoon Lee*, Alex Alemi*, Jeffrey Pennington, Adam Roberts, Jascha Sohl-Dickstein*, Noah Constant
Transformers Struggle to Learn to Search
Abulhair Saparov, Srushti Ajay Pawar, Shreyas Pimpalgaonkar, Nitish Joshi, Richard Yuanzhe Pang, Vishakh Padmakumar, Seyed Mehran Kazemi, Najoung Kim, He He
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schuurmans, Yuejie Chi, Bo Dai
Variance-Reducing Couplings for Random Features
Isaac Reid, Stratis Markou, Krzysztof Choromanski, Richard E. Turner, Adrian Weller
YouTube-SL-25: A Large-Scale, Open-Domain Multilingual Sign Language Parallel Corpus
Garrett Tanzer, Biao Zhang
Agents' Room: Narrative Generation Through Multi-Step Collaboration
Fantine Huot, Reinald Kim Amplayo, Jennimaria Palomaki, Alice Shoshana Jakobovits, Elizabeth Clark, Mirella Lapata
Can We Talk Models Into Seeing the World Differently?
Paul Gavrikov, Jovita Lukasik, Steffen Jung, Robert Geirhos, M. Jehanzeb Mirza, Margret Keuper, Janis Keuper
Controlling Space and Time With Diffusion Models
Daniel Watson, Saurabh Saxena, Lala Li, Andrea Tagliasacchi, David Fleet
Deep MMD Gradient Flow Without Adversarial Training
Alexandre Galashov, Valentin De Bortoli, Arthur Gretton
Diffusion Models Are Real-Time Game Engines
Dani Valevski, Yaniv Leviathan, Moab Arar*, Shlomi Fruchter
Efficient Stagewise Pre-training via Progressive Subnetworks
Abhishek Panigrahi*, Nikunj Saunshi, Kaifeng Lyu*, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale*, Sanjiv Kumar
ElasticTok: Adaptive Tokenization for Image and Video
Wilson Yan, Vlad Mnih, Aleksandra Faust, Matei Zaharia, Pieter Abbeel, Hao Liu
Fluid: Scaling Autoregressive Text-to-Image Generative Models With Continuous Tokens
Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun, Kaiming He, Yonglong Tian
Guided Score Identity Distillation for Data-Free One-Step Text-to-Image Generation
Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, Hai Huang*
KiVA: Kid-inspired Visual Analogies for Testing Large Multimodal Models
Eunice Yiu, Maan Qraitem, Anisa Noor Majhi, Charlie Wong, Yutong Bai, Shiry Ginosar, Alison Gopnik, Kate Saenko
Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG
Bowen Jin*, Jinsung Yoon, Jiawei Han, Sercan Ö. Arik
Measuring Non-Adversarial Reproduction of Training Data in Large Language Models
Michael Aerni, Javier Rando, Edoardo Debenedetti, Nicholas Carlini, Daphne Ippolito, Florian Tramèr
MUSE: Machine Unlearning Six-Way Evaluation for Language Models
Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao Liu, Luke Zettlemoyer, Noah A. Smith, Chiyuan Zhang
OmnixR: Evaluating Omni-Modality Language Models on Reasoning Across Modalities
Lichang Chen, Hexiang Hu, Mingda Zhang, Yiwen Chen, Zifeng Wang, Yandong Li, Pranav Shyam, Tianyi Zhou, Heng Huang, Ming-Hsuan Yang, Boqing Gong
On Evaluating the Durability of Safeguards for Open-Weight LLMs
Xiangyu Qi, Boyi Wei, Nicholas Carlini, Yangsibo Huang, Tinghao Xie, Luxi He, Matthew Jagielski, Milad Nasr, Prateek Mittal, Peter Henderson
Revisit Micro-Batch Clipping: Adaptive Data Pruning via Gradient Manipulation
Lun Wang
Speculative Knowledge Distillation: Bridging the Teacher–Student Gap Through Interleaved Sampling
Wenda Xu*, Rujun Han, Zifeng Wang, Long T. Le, Dhruv Madeka, Lei Li, William Yang Wang, Rishabh Agarwal, Chen-Yu Lee, Tomas Pfister
Test of Time: A Benchmark for Evaluating LLMs on Temporal Reasoning
Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch, Sungyong Seo, Jonathan Halcrow, Bryan Perozzi
The Hyperfitting Phenomenon: Sharpening and Stabilizing LLMs for Open-Ended Text Generation
Fredrik Carlsson, Fangyu Liu, Daniel Ward, Murathan Kurfali, Joakim Nivre
When Does Compositional Structure Yield Compositional Generalization? A Kernel Theory
Samuel Lippl, Kim Stachenfeld
A Simple Approach to Unifying Diffusion-Based Conditional Generation
Xirui Li, Charles Herrmann, Kelvin C.K. Chan, Yinxiao Li, Deqing Sun, Chao Ma, Ming-Hsuan Yang
Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models
Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents
Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry, Divya Tyamagundlu, Timothy Lillicrap, Oriana Riva
CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL
Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Özcan, Sercan Ö. Arik
Diffusion Models and Gaussian Flow Matching: Two Sides of the Same Coin
Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, Tim Salimans
Does Safety Training of LLMs Generalize to Semantically Related Natural Prompts?
Sravanti Addepalli, Yerram Varun, Arun Suggala, Karthikeyan Shanmugam, Prateek Jain
Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation
Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holynski, Steven M. Seitz
Learning Continually by Spectral Regularization
Alex Lewandowski, Michał Bortkiewicz, Saurabh Kumar, András György, Dale Schuurmans, Mateusz Ostaszewski, Marlos C. Machado
LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, Yonatan Belinkov
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk, Jimmy Z. Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, Seth Neel
Plastic Learning With Deep Fourier Features
Alex Lewandowski, Dale Schuurmans, Marlos C. Machado
Scalable Extraction of Training Data From Aligned, Production Language Models
Milad Nasr, Javier Rando, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne Ippolito, Christopher A. Choquette-Choo, Florian Tramèr, Katherine Lee
Scalable Influence and Fact Tracing for Large Language Model Pre-training
Tyler A. Chang*, Dheeraj Rajagopal, Tolga Bolukbasi, Lucas Dixon, Ian Tenney
Selective Attention Improves Transformer
Yaniv Leviathan, Matan Kalman, Yossi Matias
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Hailey Joren*, Jianyi Zhang*, Chun-Sung Ferng, Da-Cheng Juan, Ankur Taly, Cyrus Rashtchian
TIPS: Text-Image Pretraining With Spatial Awareness
Kevis-Kokitsi Maninis, Kaifeng Chen, Soham Ghosh*, Arjun Karpur, Koert Chen, Ye Xia, Bingyi Cao, Daniel Salz, Guangxing Han, Jan Dlabal, Dan Gnanapragasam, Mojtaba Seyedhosseini, Howard Zhou, André Araujo
Towards Scalable Exact Machine Unlearning Using Parameter-Efficient Fine-Tuning
Somnath Basu Roy Chowdhury, Krzysztof Choromanski, Arijit Sehanobish, Avinava Dubey, Snigdha Chaturvedi
VideoPhy: Evaluating Physical Commonsense for Video Generation
Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu Jiang, Yizhou Sun, Kai-Wei Chang, Aditya Grover
A Black Swan Hypothesis: The Role of Human Irrationality in AI Safety
Hyunin Lee, Chanwoo Park, David Abel, Ming Jin
CURIE: Evaluating LLMs on Multitask Scientific Long-Context Understanding and Reasoning (see blog post)
Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya*, Peter Norgaard, Nayantara Mudur, Martyna Plomecka*, Paul Raccuglia, Yasaman Bahri, Victor V. Albert, Pranesh Srinivasan, Haining Pan, Philippe Faist, Brian Rohr, Michael J. Statt, Dan Morris, Drew Purves, Elise Kleeman, Ruth Alcantara, Matthew Abraham, Muqthar Mohammad, Ean Phing VanLee, Chenfei Jiang, Elizabeth Dorfman, Eun-Ah Kim, Michael P. Brenner, Viren Jain, Sameera Ponda, Subhashini Venugopalan
DeciMamba: Exploring the Length Extrapolation Potential of Mamba
Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior Wolf, Raja Giryes
Differentially Private Optimization for Non-Decomposable Objective Functions
Weiwei Kong, Andrés Muñoz Medina, Mónica Ribero
Diversity-Rewarded CFG Distillation
Geoffrey Cideron, Andrea Agostinelli, Johan Ferret, Sertan Girgin, Romuald Elie, Olivier Bachem, Sarah Perrin, Alexandre Ramé
Faster, More Efficient RLHF Through Off-Policy Asynchronous Learning
Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, Aaron Courville
LevAttention: Time, Space and Streaming Efficient Algorithm for Heavy Attentions
Ravindran Kannan, Chiranjib Bhattacharyya, Praneeth Kacham, David Woodruff*
Mitigating Object Hallucination in MLLMs via Data-Augmented Phrase-Level Alignment
Pritam Sarkar*, Sayna Ebrahimi, Ali Etemad*, Ahmad Beirami, Sercan Ö. Arik, Tomas Pfister
Motion Control of High-Dimensional Musculoskeletal Systems With Hierarchical Model-Based Planning
Yunyue Wei, Shanning Zhuang, Vincent Zhuang, Yanan Sui
Multi-Agent Cooperation Through Learning-Aware Policy Gradients
Alexander Meulemans, Seijin Kobayashi, Johannes Von Oswald, Nino Scherrer, Eric Elmoznino, Blake Aaron Richards, Guillaume Lajoie, Blaise Agüera y Arcas, João Sacramento
Near-Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo, Thomas Steinke, Abhradeep Guha Thakurta, Arun Ganesh, Saminul Haque
Offline Hierarchical Reinforcement Learning via Inverse Optimization
Carolin Schmidt, Daniele Gammelli, James Harrison, Marco Pavone, Filipe Rodrigues
SIMPL: Scalable and Hassle-Free Optimisation of Neural Representations From Behaviour
Tom M. George, Pierre Glaser, Kimberly Stachenfeld, Caswell Barry, Claudia Clopath
Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q. Tran, Mehran Kazemi
SMITE: Segment Me In TimE
Amirhossein Alimohammadi, Sauradip Nag, Saeid Asgari Taghanaki, Andrea Tagliasacchi, Ghassan Hamarneh, Ali Mahdavi Amiri
Steering Large Language Models Between Code Execution and Textual Reasoning
Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma, Chuchu Fan, Chi Wang
The Crystal Ball Hypothesis in Diffusion Models: Anticipating Object Positions From Initial Noise
Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Boqing Gong, Cho-Jui Hsieh, Minhao Cheng
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke, Milad Nasr, Arun Ganesh, Borja Balle, Christopher A. Choquette-Choo, Matthew Jagielski, Jamie Hayes, Abhradeep Guha Thakurta, Adam Smith, Andreas Terzis
Training-Free Diffusion Model Alignment With Sampling Demons
Po-Hung Yeh, Kuang-Huei Lee, Jun-Cheng Chen
Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy
Yangsibo Huang, Daogao Liu, Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Milad Nasr, Amer Sinha, Chiyuan Zhang
A Unifying Framework for Representation Learning
Shaden Naif Alshammari, John Hershey, Axel Feldmann, William Freeman, Mark Hamilton
Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Zhe Li, Bicheng Ying, Zidong Liu, Chaosheng Dong, Haibo Yang
Building Math Agents With Multi-Turn Iterative Preference Learning
Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, Tianqi Liu
Debiasing Federated Learning With Correlated Client Participation
Zhenyu Sun, Ziyang Zhang, Zheng Xu, Gauri Joshi, Pranay Sharma, Ermin Wei
Descent With Misaligned Gradients and Applications to Hidden Convexity
Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, Manish Purohit
Do LLMs Have Consistent Values?
Naama Rozen, Liat Bezalel, Gal Elidan, Amir Globerson, Ella Daniel
Efficient Exploration and Discriminative World Model Learning With an Object-Centric Abstraction
Anthony GX-Chen, Kenneth Marino, Rob Fergus
Fourier Head: Helping Large Language Models Learn Complex Probability Distributions
Nate Gillman, Daksh Aggarwal, Michael Freeman, Saurabh Singh, Chen Sun
Generative Verifiers: Reward Modeling as Next-Token Prediction
Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, Rishabh Agarwal
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
Harshit Varma*, Dheeraj Mysore Nagaraj, Karthikeyan Shanmugam
Interaction Asymmetry: A General Principle for Learning Composable Abstractions
Jack Brady, Julius von Kügelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, Wieland Brendel
JetFormer: An Autoregressive Generative Model of Raw Images and Text
Michael Tschannen, André Susano Pinto, Alexander Kolesnikov
Large Language Models Are Interpretable Learners
Ruochen Wang*, Si Si, Felix Yu, Dorothea Wiesmann, Cho-Jui Hsieh, Inderjit Dhillon
Learning to Clarify: Multi-Turn Conversations With Action-Based Contrastive Self-Training
Maximillian Chen*, Ruoxi Sun, Tomas Pfister, Sercan Ö. Arik
Linear Transformer Topological Masking With Graph Random Features
Isaac Reid*, Avinava Dubey, Deepali Jain, Will Whitney, Amr Ahmed, Joshua Ainslie, Alex Bewley, Mithun George Jacob, Aranyak Mehta, David Rendleman, Connor Schenck, Richard E. Turner, René Wagner, Adrian Weller, Krzysztof Marcin Choromanski
LiNeS: Post-Training Layer Scaling Prevents Forgetting and Enhances Model Merging
Ke Wang, Nikolaos Dimitriadis, Alessandro Favero, Guillermo Ortiz-Jimenez, François Fleuret, Pascal Frossard
Measuring Memorization in RLHF for Code Completion
Aneesh Pappu, Billy Porter, Ilia Shumailov, Jamie Hayes
More Experts Than Galaxies: Conditionally-Overlapping Experts With Biologically-Inspired Fixed Routing
Sagi Shaier, Francisco Pereira, Katharina von der Wense, Lawrence E. Hunter, Matt Jones
Mufu: Multilingual Fused Learning for Low-Resource Translation with LLM
Zheng Wei Lim*, Nitish Gupta, Honglin Yu, Trevor Cohn
NL-Eye: Abductive NLI For Images
Mor Ventura, Michael Toker, Nitay Calderon, Zorik Gekhman, Yonatan Bitton, Roi Reichart
On the Transfer of Object-Centric Representation Learning
Aniket Rajiv Didolkar, Andrii Zadaianchuk, Anirudh Goyal, Michael C. Mozer, Yoshua Bengio, Georg Martius, Maximilian Seitzer
Personalized Representation From Personalized Generation
Shobhita Sundaram*, Julia Chae, Yonglong Tian*, Sara Beery, Phillip Isola
Re-Evaluating Open-Ended Evaluation of Large Language Models
Siqi Liu, Ian Gemp, Luke Marris, Georgios Piliouras, Nicolas Heess, Marc Lanctot
Relaxed Recursive Transformers: Effective Parameter Sharing With Layer-wise LoRA
Sangmin Bae*, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, Tal Schuster
RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation
Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta*, Akhil Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zambelli, Murilo F. Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Żołna, Scott Reed, Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Tom Rothörl, José Enrique Chen, Yusuf Aytar, Dave Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, Nicolas Heess
Round and Round We Go! What Makes Rotary Positional Encodings Useful?
Federico Barbero*, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, Petar Veličković
Scaling Laws for Downstream Task Performance in Machine Translation
Berivan Isik, Natalia Ponomareva, Hussein Hazimeh*, Dimitris Paparas, Sergei Vassilvitskii, Sanmi Koyejo*
SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pre-training of LLMs
Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, Maryam Mehri Dehnavi
Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning
Samuel Garcin, Trevor McInroe, Pablo Samuel Castro, Prakash Panangaden, Christopher G. Lucas, David Abel, Stefano V. Albrecht
To Clip or Not to Clip: The Dynamics of SGD With Gradient Clipping in High Dimensions
Noah Marshall, Ke Liang Xiao, Elliot Paquette, Atish Agarwala
Understanding and Mitigating Bottlenecks of State Space Models Through the Lens of Recency and Over-Smoothing
Peihao Wang, Ruisi Cai, Yuehao Wang, Jiajun Zhu, Pragya Srivastava, Zhangyang Wang, Pan Li
Video-STaR: Self-Training Enables Video Instruction Tuning With Any Supervision
Orr Zohar, Xiaohan Wang, Yonatan Bitton, Idan Szpektor, Serena Yeung-Levy
What Secrets Do Your Manifolds Hold? Understanding the Local Geometry of Generative Models
Ahmed Imtiaz Humayun, Ibtihel Amara, Cristina Vasconcelos, Deepak Ramachandran, Candice Schumann, Junfeng He, Katherine Heller, Golnoosh Farnadi, Negar Rostamzadeh, Mohammad Havaei
Accelerating Inference of Retrieval-Augmented Generation via Sparse Context Selection
Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao Liu, Chu-Cheng Lin, Lei Shu, Liangchen Luo, Lei Meng, Bang Liu, Jindong Chen
Adversarial Score Identity Distillation: Rapidly Surpassing the Teacher in One Step
Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, Hai Huang*
Beyond Worst-Case Dimensionality Reduction for Sparse Vectors
Sandeep Silwal, David P. Woodruff, Qiuyi Zhang
BOND: Aligning LLMs With Best-of-N Distillation
Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre Ramé, Bobak Shahriari, Sarah Perrin, Abram L. Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk, Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt Hoffman, Nikola Momchev, Olivier Bachem
DiSK: Differentially Private Optimizer With Simplified Kalman Filter for Noise Reduction
Xinwei Zhang, Zhiqi Bu, Borja Balle, Mingyi Hong, Meisam Razaviyayn, Vahab Mirrokni
From Few to Many: Self-Improving Many-Shot Reasoners Through Iterative Optimization and Generation
Xingchen Wan, Han Zhou, Ruoxi Sun, Sercan Ö. Arik
Grounding by Trying: LLMs With Reinforcement Learning-Enhanced Retrieval
Sheryl Hsu, Omar Khattab, Chelsea Finn, Archit Sharma
Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language Models
Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier, Rishabh Agarwal, Aviral Kumar, Aleksandra Faust
InvestESG: A Multi-Agent Reinforcement Learning Benchmark for Studying Climate Investment as a Social Dilemma
Xiaoxuan Hou, Jiayi Yuan, Joel Z. Leibo, Natasha Jaques
Learn-by-Interact: A Data-Centric Framework For Self-Adaptive Agents in Realistic Environments
Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, Sercan Ö. Arik
Persistent Pre-training Poisoning of LLMs
Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini, Florian Tramèr, Daphne Ippolito
Privately Counting Partially Ordered Data
Matthew Joseph, Mónica Ribero, Alexander Yu
Reasoning With Latent Thoughts: On the Power of Looped Transformers
Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, Sashank J. Reddi
Recite, Reconstruct, Recollect: Memorization in LMs as a Multifaceted Phenomenon
USVSN Sai Prashanth, Alvin Deng, Kyle O'Brien, Jyothir S V, Mohammad Aflah Khan, Jaydeep Borkar, Christopher A. Choquette-Choo, Jacob Ray Fuehne, Stella Biderman, Tracy Ke, Katherine Lee, Naomi Saphra
Revealing the 3D Cosmic Web Through Gravitationally Constrained Neural Fields
Brandon Zhao, Aviad Levis, Liam Connor, Pratul P. Srinivasan, Katherine L. Bouman
Scaling Wearable Foundation Models (see blog post)
Girish Narayanswamy*, Xin Liu, Kumar Ayush, Yuzhe Yang, Xuhai Xu, Shun Liao, Jake Garrison, Shyam A. Tailor, Jake Sunshine, Yun Liu, Tim Althoff, Shrikanth Narayanan, Pushmeet Kohli, Jiening Zhan, Mark Malhotra, Shwetak Patel, Samy Abdel-Ghaffar, Daniel McDuff
Semantic Image Inversion and Editing Using Rectified Stochastic Differential Equations
Litu Rout*, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, Wen-Sheng Chu
The Journey Matters: Average Parameter Count Over Pre-training Unifies Sparse and Dense Scaling Laws
Tian Jin, Ahmed Imtiaz Humayun, Utku Evci, Suvinay Subramanian, Amir Yazdanbakhsh, Dan Alistarh, Gintare Karolina Dziugaite
Toward Understanding In-Context vs. In-Weight Learning
Bryan Chan, Xinyi Chen, András György, Dale Schuurmans
Unbounded: A Generative Infinite Game of Character Life Simulation
Jialu Li*, Yuanzhen Li, Neal Wadhwa, Yael Pritch, David E. Jacobs, Michael Rubinstein, Mohit Bansal, Nataniel Ruiz
Understanding and Enhancing Safety Mechanisms of LLMs via Safety-Specific Neuron
Yiran Zhao, Wenxuan Zhang, Yuxi Xie, Anirudh Goyal, Kenji Kawaguchi, Michael Shieh
Workshops
-
Sun, Apr 27 | 8:00AM — 5:15PM, Hall 4 #6
Foundation Models in the WildSpeakers: Xinyun Chen
-
Sun, Apr 27 | 8:45AM — 5:00PM, Hall 4 #2
Future of Machine Learning Data Practices and RepositoriesSpeakers: Isabelle Guyon
-
Sun, Apr 27 | 9:00AM — 4:20PM, Topaz 220 - 225
Generative Models for Robot LearningSpeakers: Yilun Du
-
Sun, Apr 27 | 9:00AM — 6:00PM, Hall 1 Apex
Human-AI CoevolutionSpeakers: James Evans, Winnie Street
Organizer: Jacy Reese Anthis, Geoff Keeling
-
Sun, Apr 27 | 9:00AM — 6:00PM, Garnet 213-215
Machine Learning for Genomics Explorations (MLGenX)Speakers: Shekoofeh Azizi
Organizer: Arman Hasanzadeh
-
Sun, Apr 27 | 9:00AM — 6:00PM, Opal 103 - 104
Machine Learning for Remote Sensing (ML4RS)Organizer: Evan Shelhamer
-
Sun, Apr 27 | 9:00AM — 6:00PM, Conference GHJ
Machine Learning Multiscale ProcessesOrganizer: Isabelle Guyon
-
Sun, Apr 27 | 9:00AM — 6:00PM, Hall 4 #3
Modularity for Collaborative, Decentralized, and Continual Deep Learning (MCDC)Speakers: Jonas Pfeiffer, Sneha Kudugunta
Organizer: Prateek Yadav, Arthur Douillard, Lucio Dery
-
Sun, Apr 27 | 9:00AM — 5:30PM, Topaz 220 - 225
Neural Network Weights as a New Data ModalityOrganizer: Allan Zhou
-
Sun, Apr 27 | 9:00AM — 6:00PM, Topaz Concourse
Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in Reliable AISpeakers: Jie Ren
-
Sun, Apr 27 | 9:00AM — 6:00PM, Hall 4 #7
Sparsity in LLMs (SLLM): Deep Dive Into Mixture of Experts, Quantization, Hardware, and InferenceSpeakers: Azalia Mirhoseini
Organizer: Berivan Isik, Utku Evci
-
Sun, Apr 27 | 8:30AM — 6:30PM, Garnet 216 - 218
SSI-FM: Scaling Self-Improving Foundation Models Without Human SupervisionSpeakers: Noah Goodman
Organizer: Feryal Behbahani, Aviral Kumar
-
Sun, Apr 27 | 9:00AM — 6:00PM, Garnet 212 & 219
Towards Robots With Human-Level AbilitiesSpeakers: Sandy Huang
Organizer: Alex Bewley, Dhruv Shah, Ted Xiao
Advisors: Markus Wulfmeier, Jonathan Tompson
-
Sun, Apr 27 | 9:00AM — 6:00PM, Garnet 218 - 219
VerifAI: AI Verification in the WildSpeakers: Pengcheng Yin, Koushik Sen
-
Sun, Apr 27 | 8:55AM — 5:05PM, Peridot 202 - 203
Will Synthetic Data Finally Solve the Data Access Problem?Speakers: Natalia Ponomareva
Organizer: Peter Kairouz, Zheng Xu, Chulin Xie
-
Mon, Apr 28 | 8:50AM — 6:10PM, Garnet 216 - 214
Bidirectional Human-AI AlignmentSpeakers: Been Kim
Organizer: Yang Li
-
Mon, Apr 28 | 8:50AM — 6:00PM, Hall 4 #6
Building Trust in Language Models and ApplicationsPanelists: Katherine Lee
-
Mon, Apr 28 | 9:00AM — 5:40PM, Hall 1 Apex
Deep Generative Model in Machine Learning: Theory, Principle and EfficacySpeakers: Valentin De Bortoli
-
Mon, Apr 28 | 9:00AM — 6:00PM, Peridot 202 - 203
Frontiers in Probabilistic Inference: Learning Meets SamplingPanelists: Michael Hutchinson
Organizer: Arnaud Doucet
-
Mon, Apr 28 | 9:00AM — 6:00PM, Hall 4 #1
I Can’t Believe It’s Not Better: Challenges in Applied Deep LearningSpeakers: Otilia Stretcu
Advisors: Francisco J. R. Ruiz
-
Mon, Apr 28 | 9:00AM — 5:40PM, Hall 4 #7
Learning Meaningful Representations of Life (LMRL)Panelists: Catherine Tong
-
Mon, Apr 28 | 9:00AM — 5:10PM, Hall 4 #4
Navigating and Addressing Data Problems for Foundation Models (DATA-FM)Speakers: Baharan Mirzasoleiman
-
Mon, Apr 28 | 9:00AM — 6:00PM, Garnet 212 - 213
Reasoning and Planning for Large Language ModelsSpeakers: Natasha Jaques
Organizer: Xidong Feng
-
Mon, Apr 28 | 8:15AM — 5:30PM, Peridot 204 - 205
SCOPE: Scalable Optimization for Efficient and Adaptive Foundation ModelsOrganizer: Amir Yazdanbakhsh
-
Mon, Apr 28 | 9:00AM — 6:00PM, Garnet 214 - 215
Spurious Correlation and Shortcut Learning: Foundations and SolutionsSpeakers: Katherine Hermann
-
Mon, Apr 28 | 9:00AM — 6:00PM, Peridot 201 & 206
World Models: Understanding, Modelling and ScalingSpeakers: Tim Rocktäschel, Tom Everitt, Jack Parker-Holder
Organizer: Xidong Feng, Jiaxin Shi, Francesco Faccio