Google Research

On the effect of the activation function on the distribution of hidden nodes in a deep network

Neural Computation, vol. 31 (2019), pp. 2562-2580


We analyze the joint probability distribution on the lengths of the vectors of hidden variables in different layers of a fully connected deep network, when the weights and biases are chosen randomly according to Gaussian distributions. We show that, if the activation function φ satisfies a minimal set of assumptions, satisfied by all activation functions that we know that are used in practice, then, as the width of the network gets large, the “length process” converges in probability to a length map that is determined as a simple function of the variances of the random weights and biases, and the activation function φ. We also show that this convergence may fail for φ that violate our assumptions.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work