Arjun Reddy Akula
I am a Research Scientist at Google DeepMind in Mountain View. My research interests are in computer vision, natural language processing (NLP), statistical modeling and inference, and deep learning.
Prior to this, I got my PhD from UCLA in Jan 2022, advised by Prof. Song-Chun Zhu. During my PhD, I interned at Amazon Alexa AI (Sunnyvale, CA), Google Research (Los Angeles, CA), Amazon AI (Palo Alto, CA) and Mila (Montreal). Prior to my PhD, I worked as a research software engineer at IBM Research AI (India) for 2.5 years. I did my Bachelors and Masters in Computer Science and Engineering from IIIT Hyderabad, India. I am an active member of the academic community serving as a reviewer/program committee member of ACL, CVPR, ARR, EMNLP, ICCV, AAAI, ECCV, NeurIPS and NAACL. Outside of work, I enjoy hiking, traveling, and playing Table Tennis. Here is a link to my personal website: www.arjunakula.com
Research Areas
Authored Publications
Sort By
Discriminative Diffusion Models as Few-shot Vision and Language Learners
Xuehai He
Weixi Feng
Tsu-Jui Fu
Varun Jampani
William Yang Wang
Xin Eric Wang
ArXiv (2023)
Preview abstract
Diffusion models, such as Stable Diffusion, have shown incredible performance on text-to-image generation. Since text-to-image generation often requires models to generate visual concepts with fine-grained details and attributes specified in text prompts, can we leverage the powerful representations learned by pre-trained diffusion models for discriminative tasks such as image-text matching? To answer this question, we propose a novel approach, Discriminative Stable Diffusion (DSD), which turns pre-trained text-to-image diffusion models into few-shot discriminative learners. Our approach uses the cross-attention score of a Stable Diffusion model to capture the mutual influence between visual and textual information and fine-tune the model via attention-based prompt learning to perform image-text matching. By comparing DSD with state-of-the-art methods on several benchmark datasets, we demonstrate the potential of using pre-trained diffusion models for discriminative tasks with superior results on few-shot image-text matching.
View details
Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis
Weixi Feng
Xuehai He
Tsu-Jui Fu
Varun Jampani
Xin Eric Wang
William Yang Wang
ICLR (2023)
Preview abstract
Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. In this work, we improve the compositional skills of T2I models, specifically more accurate attribute binding and better image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, we can better preserve the compositional semantics in the generated image by manipulating the cross-attention representations based on linguistic insights. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.
View details
LayoutGPT: Compositional Visual Planning and Generation with Large Language Models
Weixi Feng
Wangrong Zhu
Tsu-Jui Fu
Varun Jampani
Xuehai He
Xin Eric Wang
William Wang
NeurIPS (2023)
Preview abstract
Attaining a high degree of user controllability in visual generation often requires intricate, fine-grained inputs like layouts. However, such inputs impose a substantial burden on users when compared to simple text inputs. To address the issue, we study how Large Language Models (LLMs) can serve as visual planners by generating layouts from text conditions, and thus collaborate with visual generative models. We propose LayoutGPT, a method to compose in-context visual demonstrations in style sheet language to enhance the visual planning skills of LLMs. LayoutGPT can generate plausible layouts in multiple domains, ranging from 2D images to 3D indoor scenes. LayoutGPT also shows superior performance in converting challenging language concepts like numerical and spatial relations to layout arrangements for faithful text-to-image generation. When combined with a downstream image generation model, LayoutGPT outperforms text-to-image models/systems by 20-40% and achieves comparable performance as human users in designing visual layouts for numerical and spatial correctness. Lastly, LayoutGPT achieves comparable performance to supervised methods in 3D indoor scene synthesis, demonstrating its effectiveness and potential in multiple visual domains.
View details
MetaCLUE: Towards Comprehensive Visual Metaphors Research
Brendan Driscoll
Zhiwei Jia
Garima Pruthi
Leonidas Guibas
Varun Jampani
CVPR (2023)
Preview abstract
Creativity is an indispensable part of human cognition and also an inherent part of how we make sense of the world. Metaphorical abstraction is fundamental in communicating creative ideas through nuanced relationships between abstract concepts such as feelings. While computer vision benchmarks and approaches predominantly focus on understanding and generating literal interpretations of images, metaphorical comprehension of images remains relatively unexplored. Towards this goal, we introduce MetaCLUE, a set of vision tasks on visual metaphor. We also collect high-quality and rich metaphor annotations (abstract objects, concepts, relationships along with their corresponding object boxes) as there do not exist any datasets that facilitate the evaluation of these tasks. We perform a comprehensive analysis of state-of-the-art models in vision and language based on our annotations, highlighting strengths and weaknesses of current approaches in visual metaphor Classification, Localization, Understanding (retrieval, question answering, captioning) and gEneration (text-to-image synthesis) tasks. We hope this work provides a concrete step towards developing AI systems with human-like creative capabilities.
View details
KAFA: Rethinking Image Ad Understanding with Knowledge-Augmented Feature Adaptation of Vision-Language Models
Zhiwei Jia
Garima Pruthi
Hao Su
Varun Jampani
ACL 2023 (Industry Track) (2023)
Preview abstract
Image ad understanding is a crucial task with wide real-world applications. Although highly challenging with the involvement of diverse atypical scenes, real-world entities, and reasoning over scene-texts, how to interpret image ads is relatively under-explored, especially in the era of foundational vision-language models (VLMs) featuring impressive generalizability and adaptability. In this paper, we perform the first empirical study of image ad understanding through the lens of pre-trained VLMs. We benchmark and reveal practical challenges in adapting these VLMs to image ad understanding. We propose a simple feature adaptation strategy to effectively fuse multimodal information for image ads and further empower it with knowledge of real-world entities. We hope our study draws more attention to image ad understanding which is broadly relevant to the advertising industry.
View details
ALFRED-L: Investigating the Role of Language for Action Learning in Interactive Visual Environments
Spandana Gella
Aishwarya Padmakumar
Mahdi Namazifar
Mohit Bansal
Jesse Thomason
Dilek Hakkani-Tur
Conference on Empirical Methods in Natural Language Processing (EMNLP) (2022)
Preview abstract
Embodied Vision and Language Task Completion requires an embodied agent to interpret natural language instructions and egocentric visual observations to navigate through and interact with environments. In this work, we examine ALFRED, a challenging benchmark for embodied task completion, with the goal of gaining insight into how effectively models utilize language. We find evidence that sequence-to-sequence and transformer-based models trained on this benchmark are not sufficiently sensitive to changes in input language instructions. Next, we construct a new test split -- ALFRED-L to test whether ALFRED models can generalize to task structures not seen during training that intuitively require the same types of language understanding required in ALFRED. Evaluation of existing models on ALFRED-L suggests that (a) models are overly reliant on the sequence in which objects are visited in typical ALFRED trajectories and fail to adapt to modifications of this sequence and (b) models trained with additional augmented trajectories are able to adapt relatively better to such changes in input language instructions.
View details
CPL: Counterfactual Prompt Learning for Vision and Language Models
Xuehai He
Diji Yang
Weixi Feng
Tsu-Jui Fu
Varun Jampani
William Yang Wang
Xin Eric Wang
Conference on Empirical Methods in Natural Language Processing (EMNLP) (2022)
Preview abstract
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts.
Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel Counterfactual Prompt Learning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.
Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09% and 25.08% relative improvements across three few-shot scenarios on unseen test sets respectively.
View details
Preview abstract
Neural module networks (NMN) are a popular approach for solving multi-modal tasks such as visual question answering (VQA) and visual referring expression recognition (REF). A key limitation in prior implementations of NMNs is that the neural modules do not capture the association between the visual input and the relevant neighbourhood context of the textual input. This limits their generalizability. or instance, NMNs fail to understand new concepts such as "yellow sphere to the left" even when it is a combination of known concepts from train data: "blue sphere", "yellow cube", and "metallic cube to the left". In this paper, we address this limitation by introducing a language-guided adaptive convolution layer (LG-Conv) into NMN, in which the filter weights of convolutions are explicitly multiplied with a spatially varying language-guided kernel. Our model allows the neural module to adaptively co-attend over potential objects of interest from the visual and textual inputs. Extensive experiments on VQA and REF tasks demonstrate the effectiveness of our approach. Additionally, we propose a new challenging out-of-distribution test split for REF task, which we call C3-Ref+, for explicitly evaluating the NMN's ability to generalize well to adversarial perturbations and unseen combinations of known concepts. Experiments on C3-Ref+ further demonstrate the generalization capabilities of our approach.
View details
Preview abstract
One challenge in evaluating visual question answering (VQA) models in the cross-dataset adaptation setting is that the distribution shifts are multi-modal, making it difficult to identify if it is the shifts in visual or language features that play a key role. In this paper, we propose a semi-automatic framework for generating disentangled shifts by introducing a controllable visual question-answer generation (VQAG) module that is capable of generating highly-relevant and diverse question-answer pairs with the desired dataset style. We use it to create CrossVQA, a collection of test splits for assessing VQA generalization based on the VQA2, VizWiz, and Open Images datasets. We provide an analysis of our generated datasets and demonstrate its utility by using them to evaluate several state-of-the-art VQA systems. One important finding is that the visual shifts in cross-dataset VQA matter more than the language shifts. More broadly, we present a scalable framework for systematically evaluating the machine with little human intervention.
View details