Using a deep learning algorithm and integrated gradient explanation to assist grading for diabetic retinopathy
Abstract
Background Deep learning methods have recently produced algorithms that can detect disease such as diabetic retinopathy (DR) with doctor-level accuracy. We sought to understand the impact of these models on physician graders in assisted-read settings.
Methods We surfaced model predictions and explanation maps ("masks") to 9 ophthalmologists with varying levels of experience to read 1,804 images each for DR severity based on the International Clinical Diabetic Retinopathy (ICDR) disease severity scale. The image sample was representative of the diabetic screening population, and was adjudicated by 3 retina specialists for a reference standard. Doctors read each image in one of 3 conditions: Unassisted, Grades Only, or Grades+Masks.
Findings Readers graded DR more accurately with model assistance than without (p < 0.001, logistic regression). Compared to the adjudicated reference standard, for cases with disease, 5-class accuracy was 57.5% for the model. For graders, 5-class accuracy for cases with disease was 47.5 ± 5.6% unassisted, 56.9 ± 5.5% with Grades Only, and 61.5 ± 5.5% with Grades+Mask. Reader performance improved with assistance across all levels of DR, including for severe and proliferative DR. Model assistance increased the accuracy of retina fellows and trainees above that of the unassisted grader or model alone. Doctors’ grading confidence scores and read times both increased overall with assistance. For most cases, Grades + Masks was as only effective as Grades Only, though masks provided additional benefit over grades alone in cases with: some DR and low model certainty; low image quality; and proliferative diabetic retinopathy (PDR) with features that were frequently missed, such as panretinal photocoagulation (PRP) scars.
Interpretation Taken together, these results show that deep learning models can improve the accuracy of, and confidence in, DR diagnosis in an assisted read setting.
Methods We surfaced model predictions and explanation maps ("masks") to 9 ophthalmologists with varying levels of experience to read 1,804 images each for DR severity based on the International Clinical Diabetic Retinopathy (ICDR) disease severity scale. The image sample was representative of the diabetic screening population, and was adjudicated by 3 retina specialists for a reference standard. Doctors read each image in one of 3 conditions: Unassisted, Grades Only, or Grades+Masks.
Findings Readers graded DR more accurately with model assistance than without (p < 0.001, logistic regression). Compared to the adjudicated reference standard, for cases with disease, 5-class accuracy was 57.5% for the model. For graders, 5-class accuracy for cases with disease was 47.5 ± 5.6% unassisted, 56.9 ± 5.5% with Grades Only, and 61.5 ± 5.5% with Grades+Mask. Reader performance improved with assistance across all levels of DR, including for severe and proliferative DR. Model assistance increased the accuracy of retina fellows and trainees above that of the unassisted grader or model alone. Doctors’ grading confidence scores and read times both increased overall with assistance. For most cases, Grades + Masks was as only effective as Grades Only, though masks provided additional benefit over grades alone in cases with: some DR and low model certainty; low image quality; and proliferative diabetic retinopathy (PDR) with features that were frequently missed, such as panretinal photocoagulation (PRP) scars.
Interpretation Taken together, these results show that deep learning models can improve the accuracy of, and confidence in, DR diagnosis in an assisted read setting.