Traffic simulations: multi-city calibration of metropolitan highway networks

Yechen Li
Damien Pierce
27th IEEE International Conference on Intelligent Transportation Systems (ITSC) (2024)
Google Scholar

Abstract

This paper proposes an approach to perform travel demand calibration for high-resolution stochastic traffic simulators. It employs abundant travel times at the path-level, departing from the standard practice of resorting to scarce segment-level sensor counts. The proposed approach is shown to tackle high-dimensional instances in a sample-efficient way. For the first time, case studies on 6 metropolitan highway networks are carried out, considering a total of 54 calibration scenarios. This is the first work to show the ability of a calibration algorithm to systematically scale across networks. Compared to the state-of-the-art simultaneous perturbation stochastic approximation (SPSA) algorithm, the proposed approach enhances fit to field data by an average 43.5% with a maximum improvement of 80.0%, and does so within fewer simulation calls.

Research Areas